CE 601 Numerical Methods

 

COURSE SCHEDULE

 

  Week Monday Tuesday Wednesday Thursday Friday Saturday Sunday

1

 

 

30/07/2014

Lecture 1

Introduction

 

 

 

 

2

04/08/2014

 Lecture 2

Introduction to Numerical Methods

05/08/2014

Lecture 3

System of Linear Algebraic Equations-1

06/08/2014

No Class Friday Time Table

       

3

11/08/2014

Lecture 4

Gauss Elimination Method

12/08/2014

Lecture 5

LU Decomposition

13/08/2014

Lecture 6

Banded Matrix and Thomas Algorithm

       

4

18/08/2014

Lecture 7

Drawbacks of Elimination Methods, Condition Number

19/08/2014

Lecture 8

Iterative Methods to Solve Linear Systems

20/08/2014

Lecture 9

Solution of Non-Linear Equations-1

       

5

25/08/2014

Lecture 10

Open Domain Methods

26/08/2014

Lecture 11

Secant Method; Muller's Method

27/08/2014

Lecture 12

Solutions of Polynomials; System of Non-linear Equations

       

6

01/09/2014

Lecture 13

Non-Linear Systems; Polynomial Approximations

02/09/2014

Lecture 14

 Polynomials Approx. (Contd..)

03/08/2014

Lecture 15

Difference Polynomials; Multi-Variate Approx.

       

7

08/09/2014

Lecture 16

Cubic Splines

 

09/09/2014

Lecture 17

Cubic Splines;

Method of Least Squares

10/09/2014

Lecture 18

Multi-Variate Regression; Num Difg.

       

8

15/09/2014

Lecture 19

Numerical Differentiation-1

16/09/2014

Lecture 20

Numerical Differentiation-2

17/09/2014

Lecture 21

Numerical Integration-1

       

9

 

23/09/2014

Mid Semester Exam

         

10

29/09/2014

No Lecture

30/09/2014

Lecture 22

Ordinary Differential Equations-1

01/10/2014

No Class Thursday Time Table

       

11

Holiday

07/10/2014

Lecture 23

Initial Value ODEs-1

08/10/2014

Lecture 24

IV-ODE-2:  Second Order Euler

       

12

13/10/2014

Lecture 25

IV-ODE-3:  Runge-Kutta Methods-1

14/10/2014

Lecture 26

Runge-Kutta Methods-2

15/10/2014

Lecture 27

Multi-Point Methods

       

13

20/10/2014

Lecture 28

Boundary-Value ODEs

21/10/2014

Lecture 29

Partial Differential Equations-1

22/10/2014

Lecture 30

Elliptic-PDE, Parabolic PDE

       

14

27/10/2014

Lecture 31

Classification of PDEs

28/10/2014

Lecture 32

PDE Characteristics; FDM for Parabolic PDEs

29/10/2014

Lecture 33

FDM for Parabolic PDEs; Hyperbolic PDEs

       

15

03/11/2014

Lecture 34

Introduction to FEM-1

Holiday

05/11/2014

Lecture 35

Rayleigh-Ritz; Weighted Galerkin

       

16

10/11/2014

Lecture 36

Weighted Galerkin Method Steps

11/11/2014

Lecture 37

Galerkin FEM-1

12/11/2014

Lecture 38

1D Galerkin FEM-2

   

15/11/2014

Lecture 39

2D Galerkin FEM-1

 

17

17/11/2014

Lecture 40

2D Galerkin FEM-2

18/11/2014

Lecture 41

Eigen Values & Eigen Vectors

19/11/2014

Lecture 42

     

23/09/2014

End Semester Exam

18

 

 

 

 

 

 

 

Course Text Book:

1) Joe D. Hoffman (2001). Numerical Methods for Engineers and Scientists. Second Edition Revised and Expanded. MARCEL DEKKER, INC.

 

Reference Books:

1) Saumyen Guha and Rajesh Srivastava (2010). Numerical Methods for Engineering and Science. OXFORD HIGHER EDUCATION