CE 601: Numerical Methods

Lecture 37

Galerkin FEM

Course Coordinator:
Dr. Suresh A. Kartha,
Associate Professor,
Department of Civil Engineering,
IIT Guwahati.

In the last class, we started the discussion on Galerkin FEM. We were considering the boundary-value ODE

$$\frac{d^2y}{dx^2} + Qy = F; \text{ with appropriate BCs}$$

In a nutshell, the procedure is

- i) Discretise the global solution domain D(x) into elements. There can be I nodes and I –1 elements.
- ii) Approximate $y(x) \approx \tilde{y}(x) = \text{combinations of interpolating functions.}$
- iii) Substitute $\tilde{y}(x)$ in the expression for residual i.e. $R(x) = \frac{d^2 \tilde{y}}{dx^2} + Q\tilde{y} F$
- iv) The weighted integral is to be evaluated $I = \int W(x)R(x)dx$
- v) Determine element equations for each element.
- vi) Assemble element equations to form system equations.
- vii) Adjust the system equations by considering boundary conditions.
- viii) Solve the adjusted system equation for the nodal values y_i .

1) The Domain Discretisation

The domain D(x) discretised: $I \rightarrow \text{nodes}$ and $I-1 \rightarrow \text{elements}$.

The global solution of $\frac{d^2y}{dx^2} + Qy = F$ is y(x).

Let us approximate this global solution

$$y(x) \approx \tilde{y}(x) = \tilde{y}^{(1)}(x) + \tilde{y}^{(2)}(x) + \dots + \tilde{y}^{(i)}(x) + \dots + \tilde{y}^{(I-1)}(x)$$

This means that $\tilde{y}(x)$ is sum of series of local interpolating polynomials $\tilde{y}^{(i)}(x)$; i = 1, 2, 3, ..., I - 1. These local interpolating polynomials are valid only within the element 'i', elsewhere it is zero.

2) We write
$$\tilde{y}^{(i)}(x) = y_i N_i^{(i)}(x) + y_i N_{i+1}^{(i)}(x)$$

Recall
$$N_i^{(i)}(x) = -\frac{x - x_{i+1}}{\Delta x^{(i)}}$$
 Linear Shape functions
$$N_{i+1}^{(i)}(x) = -\frac{x - x_i}{\Delta x^{(i)}}$$

You can also use higher order shape functions as well.

You can see that the shape function $N_i^{(i)}(x)$ is valid only for element 'i' and elsewhere it is zero.

3) To use Galerkin method

$$I(\tilde{y}(x)) = \int_{a}^{b} W_{j}(x)R(x)dx = \int_{a}^{b} W_{j}(x)\left[\tilde{y}'' + Q\tilde{y} - F\right]dx = 0$$

Now we have seen in the last class that

$$I(\tilde{y}(x)) = \int_{a}^{b} \left[-\tilde{y}'W_{j}' + Q\tilde{y}W_{j} - FW_{j} \right] dx + \tilde{y}_{b}'W_{j}(b) - \tilde{y}_{a}'W_{j}(a) = 0$$

i.e.
$$I(\tilde{y}(x)) = I^{(1)}(\tilde{y}(x)) + I^{(2)}(\tilde{y}(x)) + \dots + I^{(I-1)}(\tilde{y}(x)) + \tilde{y}_h 'W_I(b) - \tilde{y}_a 'W_I(a) = 0$$

where
$$I^{(i)}(\tilde{y}(x)) = \int_{x_i}^{x_{i+1}} \left[-\tilde{y}'W_j' + Q\tilde{y}W_j - FW_j \right] dx$$

 $\tilde{y}^{(i)}(x)$ is the interpolating polynomial in the element *i*.

$$\tilde{y}^{(i)}(x) = y_i N_i^{(i)}(x) + y_{i+1} N_{i+1}^{(i)}(x) = -\frac{x - x_{i+1}}{\Delta x^{(i)}} y_i + -\frac{x - x_i}{\Delta x^{(i)}} y_{i+1}$$

As suggested earlier Galerkin recommended use of shape functions as weighing functions.

As
$$N_i^{(i)}(x) = 0.0$$
 for $x > x_{i+1} & x < x_i$
 $N_{i+1}^{(i)}(x) = 0.0$ for $x > x_{i+1} & x < x_i$

We can say that the total integral using $W_i = N_i^{(i)}$

$$I(\tilde{y}(x)) = \int_{a}^{b} \left(\right) dx = \int_{x_{i}}^{x_{i+1}} \left[-\tilde{y} \cdot \frac{d}{dx} (N_{i}^{(i)}(x)) + Q\tilde{y} N_{i}^{(i)} - F N_{i}^{(i)} \right] dx = 0$$

 $\therefore N_i^{(i)}(x) = 0$ everywhere else other than $x_i < x < x_{i+1}$

Also
$$N_i^{(i)}(a) = 0$$
 and $N_i^{(i)}(b) = 0$

Similarly for $W_j = N_{i+1}^{(i)}(x)$

$$I(\tilde{y}(x)) = \int_{x_i}^{x_{i+1}} \left[-\tilde{y}' \frac{d}{dx} (N_{i+1}^{(i)}(x)) + Q\tilde{y} N_{i+1}^{(i)} - F N_{i+1}^{(i)} \right] dx = 0$$

We now get two element equations for the element i.

Now since,
$$N_i^{(i)}(x) = -\frac{x - x_{i+1}}{\Delta x^{(i)}} : \frac{dN_i^{(i)}}{dx} = -\frac{1}{\Delta x^{(i)}}$$

Smilarly,
$$\frac{dN_{i+1}^{(i)}}{dx} = \frac{1}{\Delta x^{(i)}}$$
.

: In the two element equations:

$$I(\tilde{y}(x)) = \int_{x_{i}}^{x_{i+1}} \left[-\tilde{y}' \frac{d}{dx} (N_{i}^{(i)}(x)) + Q\tilde{y}N_{i}^{(i)} - FN_{i}^{(i)} \right] dx = 0$$

$$= \int_{x_{i}}^{x_{i+1}} \left[-\tilde{y}' \times \left(-\frac{1}{\Delta x^{(i)}} \right) + Q\tilde{y} \times \left(-\frac{x - x_{i+1}}{\Delta x^{(i)}} \right) - F \times \left(-\frac{x - x_{i+1}}{\Delta x^{(i)}} \right) \right] dx = 0$$
i.e.
$$\frac{1}{\Delta x^{(i)}} \left[\int_{x_{i}}^{x_{i+1}} \tilde{y}' dx - \int_{x_{i}}^{x_{i+1}} Q\tilde{y}(x - x_{i+1}) dx + \int_{x_{i}}^{x_{i+1}} F(x - x_{i+1}) dx \right] = 0$$

Similarly,
$$I(\tilde{y}(x)) = \int_{x_i}^{x_{i+1}} \left[-\tilde{y} \times \frac{1}{\Delta x^{(i)}} + Q\tilde{y} \times \frac{(x - x_i)}{\Delta x^{(i)}} - F \times \frac{(x - x_i)}{\Delta x^{(i)}} \right] dx = 0$$

or,
$$\frac{1}{\Delta x^{(i)}} \left[\int_{x_i}^{x_{i+1}} -\tilde{y}' dx + \int_{x_i}^{x_{i+1}} Q\tilde{y}(x - x_i) dx - \int_{x_i}^{x_{i+1}} F(x - x_i) dx \right] = 0$$

Using Q(x) and F(x) as average values for each element i.e. $\overline{Q}^{(i)}(x)$ and $\overline{F}^{(i)}(x)$, we get

These are the two element equations in algebraic form.

Assemble these element equations for all the elements starting from element $\boxed{1}$.