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Iterative Methods to solve systems of 
Linear equations

• Many of the engineering (and scientific) problems involve 
system of large number of equations.

o You have already seen the elimination methods to solve 
such systems.

o In Gauss elimination, the number of computations 
involved for an (n X n) system
 n steps in back substitution
 At each kth step, 
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o You can imagine the number of computations 
that may be required for 1000 x 1000 system.

o In most cases you have extremely sparse [A].

o They may be diagonally dominant.

o The diagonally dominant matrices can be 
solved by iterative methods.

 Note: A matrix [A] is said to be diagonally dominant if 
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• Common iterative methods are: 
 Jacobi iteration
Gauss-Seidel iteration
Successive over relaxation , etc.
• Q. What is the process adopted in any iterative 

scheme?
• Usual steps involved in solving [A]{x} = {b}
o Assume initial solution vector {x}(0).
o Using this initial guess improve to get {x}(1) and 

then using {x}(1) get {x}(2).
o This process goes on till {x}(s) converges to actual 

solution.
o Diagonal dominant matrices are used.



Jacobi Method
• As mentioned earlier, the iterative techniques work for 

diagonally dominant matrix.
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Now objective is to give initial guess 

and utilise in the equation (1) to get
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The process goes on till defined tolerance meets.



• In simple form,
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• You know the system [A]{x} = {b}. For an exact solution {x}, 
you have {b} – [A]{x} = 0 i.e. ,

• However in the iterative techniques our initial guess
{x}(0) ≠ {x} actual solution.
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• We can formulate a residual quantity for each 
row at any iteration, i.e.,

• Iterative methods approach the exact solution 
asymptotically as the number of iterations are 
increased.
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• Absolute error 

= Approximate value (from sth iteration) - Exact value

• Relative error = (Absolute error/Exact value)

• The iterative procedure needs to converge to 
the solution or exact value (Convergence)

• Recall,
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• For a system there will be n residuals in each 
iteration. How will you check the 
convergence?
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Or, we may incorporate

  (Relative criteria for convergence)
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• Gauss-Siedel Iteration

• If you are sequentially proceeding from first 
equation to the final nth equation, then after any 
ith equation you are aware of
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• Example of Iterative Methods
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s x1
(s) x2

(s) x3
(s) R1

(s) R2
(s) R3

(s)

0 0 0 0 7 2 -4

1 1.40 0.40 -1.00 -2 -3.2 1.2

2 1.00 -0.24 -0.700 0.6 0.9 -1.92

3 1.12 -0.06 -1.18

• You have to give a good initial guess.

• Successive Over Relaxation

o The mechanism of iterative methods:

{x}(0) -> {x}(1) -> … -> {x}(s+1)



o The iterative process is called relaxation .

o The initial vector {x}(0) is successively relaxed 
to {x}exact.

o The direction of relaxation if it is same as 
figure shows, then we can think of over 
relaxing at each iteration.

o This may increase the speed of convergence.

o The Gauss-Seidel iteration is modified as such 
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Convergence of Iterative Methods

• The form of iteration in (1) remains unchanged. These are 
stationary iteration methods. [S] -> iteration matrix.
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Also recall earlier for Jacobi iteration, we write:
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• Now if {x} is true solution, then error vector in any sth iteration:  

{e}(s) = {x} - {x}(s)

Also (1) is applicable to true solution: 

i.e. {x} = [S]{x} + {c}

So, {e}(s+1) = {x} - {x}(s+1) = [S]{x} + {c} - [S]{x}(s) - {c} 

{e}(s+1) = [S]{e}(s)

• Error vector satisfies homogeneous form of iteration.

• At start {e}(0) -> known vector from {x}(0)
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Let us assume from [ ] that

[ ] has a set of lineraly independent eigen vectors and eogen values.

; 1,2,3, ,  the eigen values
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 largest eigen value should be strictly less than 1 for convergence. 

This is Spectral radius, 

( ) 1.0   necessary condition to converge.s


