CE 601: Numerical Methods Lecture 8

Course Coordinator: Dr. Suresh A. Kartha, Associate Professor, Department of Civil Engineering, IIT Guwahati.

Iterative Methods to solve systems of

Linear equations

- Many of the engineering (and scientific) problems involve system of large number of equations.
- You have already seen the elimination methods to solve such systems.
- In Gauss elimination, the number of computations involved for an (*n X n*) system
 - n steps in back substitution

(n-k) computations for
$$I_{ik}$$

 $2(n-k)(n-k+1)$ for a_{ij} 's
i.e. $\sum_{k=1}^{n-1} (n-k) + 2(n-k)(n-k+1) + n$
 $= \frac{2n^3}{3} + \frac{n^2}{2} - \frac{7n}{6} + n \approx \frac{2n^3}{3}$

- You can imagine the number of computations that may be required for 1000 x 1000 system.
- In most cases you have extremely sparse [A].
- They may be diagonally dominant.
- The diagonally dominant matrices can be solved by iterative methods.

□ Note: A matrix [A] is said to be diagonally dominant if

$$|a_{ij}| \ge \sum_{j=1, j \neq i}^{n} |a_{ij}|; i = 1, 2, ..., n$$

- Common iterative methods are:
- ✓ Jacobi iteration
- ✓ Gauss-Seidel iteration
- ✓ Successive over relaxation , etc.
- Q. What is the process adopted in any iterative scheme?
- Usual steps involved in solving [A]{x} = {b}
- \circ Assume initial solution vector {x}⁽⁰⁾.
- Using this initial guess improve to get {x}⁽¹⁾ and then using {x}⁽¹⁾ get {x}⁽²⁾.
- This process goes on till {x}^(s) converges to actual solution.
- Diagonal dominant matrices are used.

Jacobi Method

• As mentioned earlier, the iterative techniques work for diagonally dominant matrix.

$$[A]\{x\} = \{b\}$$

or, $\sum_{j=1}^{n} a_{ij}x_j = b_i; i = 1, 2, 3, ..., n$
$$[A] = [L] + [D] + [U],$$

where $[L] \rightarrow$ a lower triangular matrix with zeroes on the diagonal,
 $[U] \rightarrow$ a upper triangular matrix with zeroes on the diagonal,
 $[D] \rightarrow$ a diagobal matrix.

$$\therefore [A]{x} = {b} \Longrightarrow [L] + [D] + [U] {x} = {b}$$

 $\Rightarrow [D]\{x\} = \{b\} - [L] + [U] \{x\} \rightarrow (1)$

Now objective is to give initial guess $x^{(0)}$ and utilise in the equation (1) to get $[D]{x}^{(1)} = {b} - [L] + [U] {x}^{(0)}$ \vdots \vdots

The process goes on till defined tolerance meets.

• In simple form,

$$[A]{x} = {b}$$

or, $\sum_{j=1}^{n} a_{ij} x_j = b_i; i = 1, 2, 3, ..., n$
for any i^{th} row,

 $a_{i1}x_1 + a_{i2}x_2 + \ldots + a_{ii}x_i + \ldots + a_{in}x_n = b_i$ Now from this equation you have,

$$x_{i} = \frac{1}{a_{ii}} \left(b_{i} - \sum_{j=1}^{i-1} a_{ij} x_{j} - \sum_{j=i+1}^{n} a_{ij} x_{j} \right); i = 1, 2, 3, \dots, n$$

Now if you have initial vector $\{x\}^{(0)}$, then improved solution vector $\{x\}^{(1)}$ has the components,

$$x_i^{(1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(0)} - \sum_{j=i+1}^n a_{ij} x_j^{(0)} \right); i = 1, 2, 3, \dots, n$$

The procedure is repeated.

For, say $(s+1)^{th}$ iteration

$$x_i^{(s+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(s)} - \sum_{j=i+1}^n a_{ij} x_j^{(s)} \right); i = 1, 2, 3, \dots, n$$

$$\Rightarrow \{x\}^{(s+1)} = [D]^{-1} \{b\} - ([L] + [U])\{x\}^{(s)}$$

We also can write this as,

$$\begin{aligned} x_i^{(s+1)} &= x_i^{(s)} + \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(s)} - a_{ii} x_i^{(s)} - \sum_{j=i+1}^n a_{ij} x_j^{(s)} \right) \\ &= x_i^{(s)} + \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^n a_{ij} x_j^{(s)} \right) \end{aligned}$$

• You know the system [A]{x} = {b}. For an exact solution {x}, you have {b} – [A]{x} = 0 i.e., $h = \sum_{n=0}^{n} a_n x_n = 0$ (theoretically)

$$b_i - \sum_{j=1} a_{ij} x_j = 0$$
 (theoretically)

However in the iterative techniques our initial guess
 {x}⁽⁰⁾ ≠ {x} actual solution.

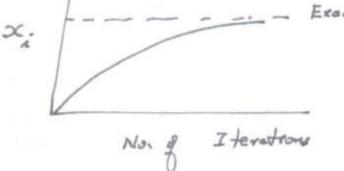
• We can formulate a residual quantity for each row at any iteration, i.e.,

$$R_{i}^{(s)} = b_{i} - \sum_{j=1}^{n} a_{ij} x_{j}^{(s)}$$

$$\therefore x_{i}^{(s+1)} = x_{i}^{(s)} + \frac{R_{i}^{(s)}}{a_{ii}}; i = 1, 2, 3, ..., n$$

You proceed the iteration till $R_i^{(s)} \approx 0.00$

 Iterative methods approach the exact solution asymptotically as the number of iterations are increased.



• Absolute error

= Approximate value (from sth iteration) - Exact value

- Relative error = (Absolute error/Exact value)
- The iterative procedure needs to converge to the solution or exact value (Convergence)

• Recall,
$$x_i^{(s+1)} = x_i^{(s)} + \frac{R_i^{(s)}}{a_{ii}}$$

i.e., $\Delta x_i = x_{i+1}^{(s+1)} - x_i^{(s)}$
 $|\Delta x_i| = \frac{R_i^{(s)}}{a_{ii}}$ is the residual criteria.

 For a system there will be n residuals in each iteration. How will you check the convergence?

•
$$\left| \Delta x_i \right|_{\text{max}} \le \varepsilon$$
 is the criteria, we may adopt.
Or, we may incorporate

$$\frac{\Delta x_{i_{\max}}}{x_{i}} \leq \varepsilon \quad \text{(Relative criteria for convergence)}$$

Or, it can be
$$\sum_{i=1}^{n} \left| \frac{\Delta x_i}{x_i} \right| \le \varepsilon$$

Or, it can be $\left[\sum_{i=1}^{n} \left(\frac{\Delta x_i}{x_i} \right)^2 \right]^{\frac{1}{2}} \le \varepsilon$

 $\varepsilon \rightarrow$ Some chosen numerical value for lower limit.

• Gauss-Siedel Iteration

$$x_i^{(s+1)} = x_i^{(s)} + \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^n a_{ij} x_j^{(s)} \right); i = 1, 2, 3, \dots, n$$

• If you are sequentially proceeding from first equation to the final nth equation, then after any ith equation you are aware of $x_1^{(s+1)}, x_2^{(s+1)}, \dots, x_{i-1}^{(s+1)}$.

$$\therefore x_i^{(s+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(s+1)} - \sum_{j=i+1}^n a_{ij} x_j^{(s)} \right); i = 1, 2, 3, \dots, n$$

Improved knowledge is used earlier here,

$$x_i^{(s+1)} = x_i^{(s)} + \frac{R_i^{(s)}}{a_{ii}}; i = 1, 2, 3, \dots, n$$

$$R_i^{(s)} = b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(s+1)} - \sum_{j=i+1}^n a_{ij} x_j^{(s)}; i = 1, 2, 3, \dots, n$$

Example of Iterative Methods

Solve using Jacobi's iteration the system,

$$\begin{pmatrix} 5 & 0 & -2 \\ 3 & 5 & 1 \\ 0 & -3 & 4 \end{pmatrix} \begin{cases} x_1 \\ x_2 \\ x_3 \end{cases} = \begin{cases} 7 \\ 2 \\ -4 \end{cases}.$$

Soln. At each iteration $x_i^{(s+1)} = x_i^{(s)} + \frac{R_i^{(s)}}{a_{ii}}$

We have
$$x_1, x_2, x_3$$
 and $R_i^{(s)} = b_i - \sum_{j=1}^3 a_{ij} x_j^{(s)}$

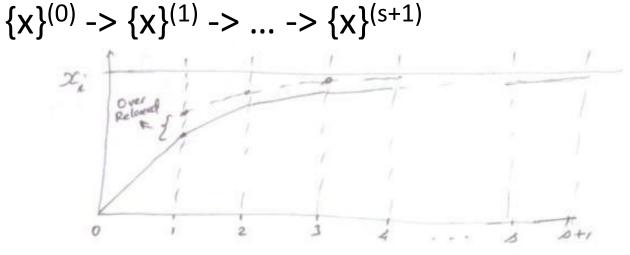
 (α)

Begin at
$$s = 0, \{x\}^{(0)} = \begin{cases} 0\\0\\0 \end{cases}$$
.

Iterate the method.

S	<i>x</i> ₁ ^(s)	$x_{2}^{(s)}$	X ₃ ^(s)	$R_1^{(s)}$	$R_2^{(s)}$	$R_{3}^{(s)}$
0	0	0	0	7	2	-4
1	1.40	0.40	-1.00	-2	-3.2	1.2
2	1.00	-0.24	-0.700	0.6	0.9	-1.92
3	1.12	-0.06	-1.18			

- You have to give a good initial guess.
- <u>Successive Over Relaxation</u>
- The mechanism of iterative methods:



- $\,\circ\,$ The iterative process is called relaxation .
- \odot The initial vector $\{x\}^{(0)}$ is successively relaxed to $\{x\}_{exact}.$
- The direction of relaxation if it is same as figure shows, then we can think of over relaxing at each iteration.
- \odot This may increase the speed of convergence.
- The Gauss-Seidel iteration is modified as such $x_i^{(s+1)} = x_i^{(s)} + w \frac{R_i^{(s)}}{a_{ii}}; i = 1, 2, 3, ..., n$

 $w \rightarrow$ over relaxation factor, 1.0 < w < 2.0

$$R_i^{(s)} = b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(s+1)} - \sum_{j=i}^n a_{ij} x_j^{(s)}$$

$$\begin{bmatrix} 5 & 0 & -2 \\ 3 & 5 & 1 \\ 0 & -3 & 4 \end{bmatrix} \begin{cases} x_1 \\ x_2 \\ x_3 \end{cases} = \begin{cases} 7 \\ 2 \\ -4 \end{cases} \quad \text{Take } w = 1.10$$
$$\{x\}^{(0)} = \begin{cases} 0 \\ 0 \\ 0 \\ 0 \end{cases} \quad \text{(The initial guess)}$$
$$R_1^{(0)} = 7,$$
$$x_1^{(1)} = 0 + 1.1 \times \frac{7.0}{5.0} = 1.54,$$
$$R_2^{(0)} = 2 - (3 \times 1.54 + 0 + 0) = -2.62$$

S	x ₁ ^(s)	$X_2^{(s)}$	X ₃ ^(s)	$R_1^{(s)}$	$R_2^{(s)}$	$R_3^{(s)}$
0	0	0	0	7	-2.62	-5.7292
1	1.54	-0.576	-1.5755			

Convergence of Iterative Methods

Recall,
$$x_i^{(s+1)} = x_i^{(s)} + \frac{R_i^{(s)}}{a_{ii}}$$

Also recall earlier for Jacobi iteration, we write:

$$\{x\}^{(s+1)} = [D]^{-1}\{b\} - [D]^{-1}([L] + [U])\{x\}^{(s)}$$

$$\Rightarrow \{x\}^{(s+1)} = [S]\{x\}^{(s)} + \{c\} \rightarrow (1)$$

where for Jacobi iteration

$$[S] = -[D]^{-1}([L] + [U])$$

$$\{c\} = [D]^{-1}\{b\}$$

For Gauss-Seidel,

$$[S] = -[D]^{-1}([L] + [U])$$

- $\{c\} = ([L] + [U])^{-1}\{b\}$
 - The form of iteration in (1) remains unchanged. These are stationary iteration methods. [S] -> iteration matrix.

Now if {x} is true solution, then error vector in any sth iteration:
 {e}^(s) = {x} - {x}^(s)

Also (1) is applicable to true solution:

i.e.
$$\{x\} = [S]\{x\} + \{c\}$$

So, $\{e\}^{(s+1)} = \{x\} - \{x\}^{(s+1)} = [S]\{x\} + \{c\} - [S]\{x\}^{(s)} - \{c\}$
 $\therefore \{e\}^{(s+1)} = [S]\{e\}^{(s)}$

- Error vector satisfies homogeneous form of iteration.
- At start {*e*}⁽⁰⁾ -> known vector from {*x*}(0)
- To satisfy convergence,

```
\lim_{s\to\infty} \{e\}^{(s)} = 0.
```

```
This happens when \lim_{s\to\infty} [S]^{(s)} = 0.
```

Let us assume from [A] that

 $[S] \rightarrow$ has a set of lineraly independent eigen vectors and eogen values. $\lambda_j; j = 1, 2, 3, \dots, n \rightarrow$ the eigen values

$$\{e\}^{(0)} = \sum_{j=1}^{n} C_j \{v_j\}; \{v_j\} \rightarrow \text{ the eigen vector}$$

Then
$$\{e\}^{(s)} = \sum_{j=1}^{n} C_j \lambda_j^s \{v_j\}$$

The largest eigen value should be strictly less than 1 for convergence. This is Spectral radius,

 $\rho(s) < 1.0 \rightarrow$ necessary condition to converge.