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Banded Matrices
• Mostly we have dealt now coefficient matrix. 

[A ] having n X n elements

 Most of the elements are non-zero.

 Such matrices are dense.

• However for many engineering and scientific 
problems, the coefficient matrices may not be 
fully filled with non-zeroes. There may be 
many zeroes.
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• If the coefficient matrix have many zero 
elements, there you can  derive suitable 
methods to efficiently  solve the system.

 Recall in Gauss elimination, you 
performed (n-1) row operations. 

 If there are many zeroes, we can avoid 
unnecessary sub-steps in row 
operations.

• For dense matrices, you may go for Gauss 
elimination or LU decomposition.

• Banded matrices are sparse matrices that 
follow certain along diagonal elements. 
Mostly they are diagonally dominant.



• If your coefficient matrix in diagonally 
dominant  or contains values along main 
diagonal and lines parallel to main diagonal.



• Bandwidth,

• Tridiagonal Matrix

oIn a banded matrix of bandwidth =3

wr = 2, wc = 2

[T]{x} = {b}  
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• Thomas Algorithm for Tridiagonal Matrix

o Recall the Gauss elimination algorithm
 In the first step, only 2nd row requires an 

operation
 What does this operation do?

 Due to this change in 2nd row:

i.e., only the diagonal element got changed.
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• Similarly, At each step ‘k’

o Only the (k+1)th row is modified.

o Only the diagonal element a(k+1)(k+1) is 
modified.

o Therefore we can utilize this peculiarity for 
computational advantage.
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o In the tridiagonal matrix

 the n X n matrix can be stored as n X 3 matrix 
with no zeroes.

The computation will be (using Gauss 
elimination principle) performed in such a way 
that first column is eliminated.
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 The multiplying factor at each step is
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• Use back-substitution,

• From this algorithm, you can see the no. of 
operations involved = 8(n-1)+1 = 8n-7.
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• Example

you can solve using the algorithm described 
above:
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Also perform back-substitution,
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4 4 42

3 3 33 4 32

Back-substitution

/ ' 1.2692 / 1.7308 0.7333

( ' ) / '

(2.7143 1 0.7333) / 3.7143

0.5333

Now, complete these.
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