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Gauss Elimination Method

• There are two processes in Gauss elimination. 

• For a linear system n X n matrix with n
unknowns [A]{x}={b}, 

→ There are (n-1) sub-steps for elimination to 
create the system [U]{x} = {y}
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• After performing (n-1) elimination steps to 
convert [A]{x} = {b} to form [U]{x}={y}, we need 
to perform back-substitution to evaluate the 
components of {x}.

• Substitution Process

• [U]{x} = {y}  where {y}T = {b1 b2
(1) b3
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• Similarly you get
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• Operations Involved in Gauss Elimination
• While using computational methods to solve linear systems, 

emphasis should be given on efficient way of computing using 
the algorithms.

• The normal computing operations involved are 

 Addition

 Subtraction

 Multiplication

 Division

• Let us hypothetically suggest for a computer, each of the 
above operation involves say ‘t’ mili-seconds. So if we have 
large number of above operattions, the computer will take 
more time to evaluate.

• In the case of Gauss elimination method, let us see how many 
no. of operations are involved to solve an n X n linear system. 



• No. of operations involved in elimination steps.
→ No. of elimination steps = (n-1)
→ No. of operations for first elimination step (i.e. k=1)
→ Evaluate multiplication factor li1.

→ There are (n-1) rows to be operated in first sub-step, so 
no of operations for multiplication factors, 

i.e. (n-1) operations (all divisions)
→ For evaluating                          

(2 operations)*(n-1)*(n-1)

→ For evaluating
(2 operations)*(n-1)

• In the first elimination step, you have the following 
number of operations.
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• Similarly, in the second elimination step (k=2)

→The no. of operations = (n-1)(2n+1),

→For k=3, no. of operations = (n-3)(2n-3)

• In general for any kth elimination step, we have 
no. of operations = (n-k)(2n-2k+3)

• Total no. operations for elimination
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• No. of operations involved in back-substitution. There 
are ‘n’ back-substiution steps: i.e. i=1,2,3,…,n

→ First back sub step,

-> 1 operation

→ Second back sub step,

-> 3 operations

→ In general for any ‘i’,

-> (2i-1) operations.

• Total no. of operations for back-substitution:

• Total no. of operations in entire Gauss elimination 
process,
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• E.g. If you have 1000 X 1000 linear system, total no. of operations 
= 0.6681655 x 10-5.

If an operation takes (hypothetically) 0.1 milli seconds per 
operation, then total time taken = 66817 seconds ≈ 18.6 hours.

• That is why, we suggest to have efficient computer methods.

• Gauss elimination method is a traditional  form, however, it is not 
the efficient method to solve system of linear equation.

• There is another direct elimination method called Gauss-Jordan 
elimination method. (this I request you to refer on your own).

• In Gauss-Jordan method the principle is the convert [A]{x} = {b} to 
the form [I]{x}={x} where {I} is a identity matrix.

• Gauss-Jordan method is computationally not efficient. You will see 
that the number of operations involved in Gauss-Jordan is = n3 +n2

–n.  



• In school days you have  also studied matrix 
inverse methods and corresponding 
determinants to solve linear systems. This 
method take 2n3 -2n2 + n number of arithmetic 
operations for matrix inverse. Also the 
multiplication [A]-1{b} further requires 2n2-n 
operations. 

• Note: As discussed in one of the earlier lecture, 
numerical methods may generate errors in the 
solutions.

• The gauss elimination method may also be 
present with errors in the solutions like round-off 
errors. One can use partial pivoting or scaled 
partial pivoting to reduce such errors.



• LU Decomposition

o We have discussed that matrix can be factored i.e., it 
can be given as product of two different matrix. 

[A] = [B][C]

o There can be many possibilities of obtaining factor 
matrices.

o In a similar tone, one can also factorize [A] as 
product of [L] and [U] i.e., [A]= [L][U] where [L] is 
lower triangular and [U] is a upper triangular 
matrix. 
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o In the representation (Eq.4) if we specify the 
values  of diagonal elements of either [L] or 
[U], then that factorization will be unique.  

o The LU decomposition methods the Doolittle 
and Crout’s work on these principles


