CE 601: Numerical Methods Lecture 34 Introduction to FEM

Lecture Delivered By

R. Someswaran

Course Coordinator:

Suresh A. Kartha,

Associate Professor,

Department of Civil Engineering,

IIT Guwahati.

Finite Element Methods

- Till the last class, we studied the various FDM used to solve PDES – like elliptic, parabolic, hyperbolic.
- In FDM, the derivatives in PDEs were approximated by difference formulas and subsequently the PDE is converted to algebraic equations at any point in the domain
- There are other numerical methods in addition to FDM to solve partial differential equations.
- Finite-Element Method is one among them.

FEM...

- FEM is a vast topic and itself is a separate course in many curriculum.
- However, as part of numerical methods, we would also like to introduce you the concept of FEM in next few lectures.
- Moreover, FEM is also widely used in many computational programs
- Also it has some advantage over FDM in some cases.
- The objective of FEM as like in FDM is to find the solutions of PDEs and/or ODEs that represent the governing phenomena.
- The solution of the differential equation is given by linear combinations of approximate solutions.

FEM (Contd..)

- We use several trial functions as approximates and subsequently utilize them in various linear combinations to get the approximate solution of PDE.
- These trial functions independently satisfy the boundary conditions of the governing PDE.
- For combinations, different weightage factors or coefficients are assigned.

 \rightarrow *e.g.* For a BV-ODE,

$$\frac{d^2y}{dx^2} + Qy = F; \ y(x_1) = y_1 \text{ and } y(x_2) = y_2.$$

We can suggest the solution in the domain to be

$$y(x) \approx \tilde{y}(x) = \sum_{i=1}^{I} C_i y_i(x)$$

where $y_i(x)$ are trial functions (usually polynomials).

To determine the appropriate coefficients C_i in $\tilde{y}(x)$,

we can use

- * Rayleigh-Ritz
- * Collocation
- * Galerkin Weighted Residual

The Rayleigh-Ritz Method

- → Based on calculus of variations
- → Functionals Function of functions
- → Objective Extremise the functionals
 Consider the problem

$$\frac{d^2y}{dx^2} + Qy = F; \ y(x = a) = y_a; \ y(x = b) = y_b.$$

 \rightarrow The simplest problem of calculus of variations in one independent variable (x) is I[y(x)]:

$$I[y(x)] = \int_{a}^{b} G(x, y, y') dx; \quad \left(\text{where } y' \equiv \frac{dy}{dx}\right)$$

where $G(x, y, y') \rightarrow$ is called Fundamental function.

- * To extremise the functional I[y(x)], we require $\delta I = 0$.
- * Let the two end points $x_1 = a$, and $x_2 = b$.

$$\therefore \delta I = \int_{a}^{b} \left(\frac{\partial G}{\partial y} \delta y + \frac{\partial G}{\partial y'} \delta y' \right) dx; \quad \left[\text{Note: } \delta y' = \delta \left(\frac{dy}{dx} \right) = \frac{d}{dx} (\delta y) \right]$$
$$= \int_{a}^{b} \left(\frac{\partial G}{\partial y} \delta y + \frac{\partial G}{\partial y'} \frac{d}{dx} (\delta y) \right) dx$$

Using integration by parts:

$$\int_{a}^{b} \left(\frac{\partial G}{\partial y'} \frac{d}{dx} (\delta y) \right) dx = \frac{\partial G}{\partial y'} \delta y \bigg|_{b}^{a} - \int_{a}^{b} \delta y \frac{d}{dx} \left(\frac{\partial G}{\partial y'} \right) dx$$

Now
$$\delta y = 0$$

$$\begin{cases} at \ x = a \\ at \ x = b \end{cases}$$

$$\therefore \delta I = 0 = \int_{a}^{b} \frac{\partial G}{\partial y} \delta y dx - \int_{a}^{b} \frac{d}{dx} \left(\frac{\partial G}{\partial y'} \right) \delta y dx = \int_{a}^{b} \left(\frac{\partial G}{\partial y} - \frac{d}{dx} \left(\frac{\partial G}{\partial y'} \right) \right) \delta y dx$$

For non-trivial cases:

$$\left| \frac{\partial G}{\partial y} - \frac{d}{dx} \left(\frac{\partial G}{\partial y'} \right) = 0 \right| \longrightarrow (1)$$

This is Euler equation of the calculus of variations.

The meaning of eq. (1) is that

- * If a functional I[y(x)] is developed and its extremum (min or max) is zero, then,
- * Euler equation is obtained which will be a differential equation whose solution is y(x).

$$\rightarrow \text{ In } \frac{d^2y}{dx^2} + Qy = F; \ y(a) = y_a; y(b) = y_b$$

y(x) is the actual solution.

Let us form a functional in y(x) i.e. I[y(x)] such that $\delta I = 0$.

 \rightarrow The fundamental function is G(x, y, y').

Let
$$G(x, y, y') = (y')^2 - Qy^2 + 2Fy$$

You can see that

$$I[y(x)] = \int_{a}^{b} [(y')^{2} - Qy^{2} + 2Fy] dx$$
 and $\delta I = 0$.

Applying Euler equation

$$\frac{\partial G}{\partial y} - \frac{d}{dx} \left(\frac{\partial G}{\partial y'} \right) = 0$$

i.e.
$$\frac{\partial G}{\partial y} = \frac{d}{dx} \left(\frac{\partial G}{\partial y'} \right)$$

$$\frac{\partial G}{\partial y} = \frac{\partial}{\partial y} \left[(y')^2 - Qy^2 + 2Fy \right] = 0 - 2Qy + 2F$$

$$\frac{d}{dx}\left(\frac{\partial G}{\partial y'}\right) = \frac{d}{dx}\left(\frac{\partial}{\partial y'}\left\{(y')^2 - Qy^2 + 2Fy\right\}\right) = \frac{d}{dx}\left[2y' - 0 + 0\right] = 2\frac{d^2y}{dx^2}$$

$$-2Qy + 2F = 2\frac{d^2y}{dx^2}$$

$$\Rightarrow \frac{d^2y}{dx^2} + Qy = F \rightarrow \text{The said BV-ODE}$$

This means that the function y(x) that extremises the Functional I[y(x)] also satisfies the BV-ODE.

 \therefore y in both are same.

Steps in Rayleigh-Ritz

(i) Determine the functional I[y(x)] that can give BV-ODE using Euler equation.

(ii) Assume
$$y(x) \approx \tilde{y}(x) = \sum_{i=1}^{I} C_i y_i(x)$$

 $y_i(x)$ are trial functions.

(iii) Substitute $\tilde{y}(x)$ in I

We will get
$$I[C_1y_1 + C_2y_2 + \cdots + C_Iy_I]$$

Please note y_1, y_2, \dots, y_I are polynomials in x.

 \therefore For $\delta I = 0$, we get

$$\frac{\partial I}{\partial C_1} = 0, \frac{\partial I}{\partial C_2} = 0, \cdots, \frac{\partial I}{\partial C_I} = 0.$$

(iv) Solve for the coefficients C_i .

For a specific example

$$\frac{d^2y}{dx^2} + Qy = F; \ y(0.0) = 0.0, \ y(1.0) = Y$$

Soln. (i) The functional I[y(x)]

$$I[y(x)] = \int_{0}^{1} \left[(y')^{2} - Qy^{2} + 2Fy \right] dx;$$

So,
$$G(x, y, y') = (y')^2 - Qy^2 + 2Fy$$
.

You have already seen that $\frac{\partial G}{\partial y} - \frac{d}{dx} \left(\frac{\partial G}{\partial y'} \right) = 0$ gave the ODE.

(ii)
$$y(x) \approx \tilde{y}(x) = C_1 y_1 + C_2 y_2 + C_3 y_3$$

 $y_1(x)$, $y_2(x)$ and $y_3(x)$ are three linearly independent trial functions.

$$y_1(x) = x, y_2(x) = x(x-1), y_3(x) = x^2(x-1).$$

Please note our boundary on right is x = 1.0.

$$\therefore \tilde{y}(x) = C_1 x + C_2 x(x-1) + C_3 x^2 (x-1)$$

We know at x = 0, y = 0

at
$$x = 1, y = Y$$

i.e.
$$Y = C_1 + 0$$
, i.e. $C_1 = Y$.

$$\therefore \tilde{y}(x, C_2, C_3) = Yx + C_2 x(x-1) + C_3 x^2 (x-1)$$

(iii)
$$I[\tilde{y}(x)] = \int_{0}^{1} [(\tilde{y}')^{2} - Q\tilde{y}'^{2} + 2F\tilde{y}'] dx = I[C_{2}, C_{3}].$$

(iv) For $\delta I = 0$, we have now

$$\frac{\partial I}{\partial C_2} = 0 = \int_0^1 \frac{\partial}{\partial C_2} (\tilde{y}^{'2}) dx - \int_0^1 \frac{\partial}{\partial C_2} (Q\tilde{y}^2) dx + \int_0^1 \frac{\partial}{\partial C_2} (2F\tilde{y}) dx$$

$$\tilde{y}' = Y + C_2 (2x - 1) + C_3 (3x^2 - 2x)$$

$$\therefore \frac{\partial \tilde{y}'}{\partial C_2} = 2x - 1; \frac{\partial}{\partial C_2} (\tilde{y}^{'2}) = 2C_2 (x^2 - x)^2 + 2(x^3 - x^2)(x^2 - x); \frac{\partial \tilde{y}}{\partial C_2} = x(x - 1).$$

$$\frac{\partial I}{\partial C_2} = \int_0^1 \frac{\partial}{\partial C_2} (\tilde{y}^{'2}) dx + \int_0^1 \frac{\partial}{\partial C_2} (2F\tilde{y}) dx$$

$$\frac{\partial I}{\partial C_3} = 0 = \int_0^1 \left[\frac{\partial}{\partial C_3} (\tilde{y}^2) - \frac{\partial}{\partial C_3} (Q\tilde{y}^2) + \frac{\partial}{\partial C_3} (2F\tilde{y}) \right] dx$$

$$\frac{\partial \tilde{y}}{\partial C_3} = x^3 - x^2; \frac{\partial \tilde{y}'}{\partial C_3} = 3x^2 - 2x$$

Substitute and integrate you will get two equations to solve C_2 and C_3 .

These equations are:

$$C_2 \times \left(\frac{1}{3} - \frac{Q}{30}\right) + C_3 \times \left(\frac{1}{6} - \frac{Q}{60}\right) = -\frac{QY}{12} + \frac{F}{6}$$

$$C_2 \times \left(\frac{1}{6} - \frac{Q}{60}\right) + C_3 \times \left(\frac{2}{15} - \frac{Q}{105}\right) = -\frac{QY}{20} + \frac{F}{12}$$

Once you get C_1 and C_2

$$\tilde{y}(x) = Yx + C_2x(x-1) + C_3x^2(x-1).$$