CE 601: Numerical Methods

Lecture 21

Numerical Integration

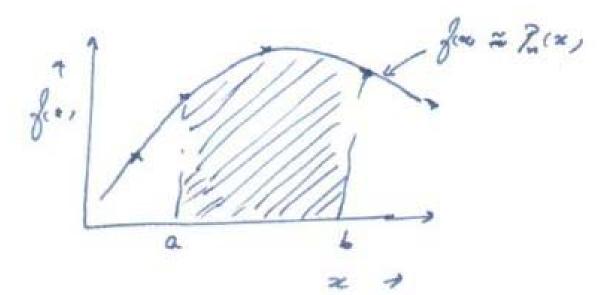
Course Coordinator:
Dr. Suresh A. Kartha,
Associate Professor,
Department of Civil Engineering,
IIT Guwahati.

Numerical Integration

- For a given set of discrete data (x_i, f_i), we have seen that we can develop a function relation of 'f' w.r.t. 'x' using polynomial approximations.
 - → We also said that such polynomials should be able to do
 - Interpolation (already seen)
 - Differentiation (numerical differentiation)
 - Integration
 - → The numerical integration schemes will be discussed here.
- If we want to do, $I = \int_{a}^{b} f(x)dx$

Then bound on the data set, we had formed

$$f(x) \approx P_n(x), \therefore I = \int_a^b f(x) dx \approx \int_a^b P_n(x) dx.$$



- How the polynomials are constructed, you have already seen.
- Using direct-fit polynomials

$$I = \int_{a}^{b} f(x)dx \approx \int_{a}^{b} P_n(x)dx = \int_{a}^{b} \left(a_0 + a_1x + \dots + a_nx^n\right)dx$$

- Similarly Lagrange polynomials, Divided difference,
 Newton's polynomials, etc. can be integrated.
- The evaluation of integrals of functions using such polynomials are called <u>quadratures</u>.

Newton – Cotes Quadratures

Recall the Newton's forward difference polynomial for uniformly spaced data

$$P_{n}(x) = f_{0} + s\Delta f_{0} + \frac{s(s-1)}{2!}\Delta^{2} f_{0} + \dots + \frac{s(s-1)(s-2)\cdots(s-(n-1))}{n!}\Delta^{n} f_{0}$$

$$\text{Error} = \frac{s(s-1)(s-2)\cdots(s-n)}{(n+1)!}(\Delta x)^{n+1} f^{n+1}(\xi); x_{0} \le x \le x_{n}$$

$$\therefore I = \int_{a}^{b} f(x)dx \approx \int_{a}^{b} P_{n}(x)dx$$

$$s = \frac{x - x_0}{\Delta x}$$
 or, $x = x_0 + s\Delta x$

For
$$x = a$$
, $a = x_0 + s(a)\Delta x$

$$x = b$$
, $b = x_0 + s(b)\Delta x$.

$$I \approx \Delta x \int_{s(a)}^{s(b)} P_n(s) ds.$$

If we choose the base point of the polynomial at x = a,

then
$$s = 0$$
 at $x = a$, and $s = \frac{x - a}{\Delta x}$

at
$$x = b$$
, $s = \frac{b - a}{\Delta x}$

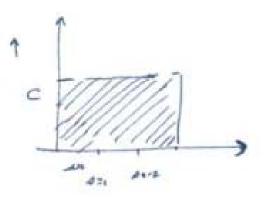
$$\therefore I \approx \Delta x \int_{0}^{s} P_{n}(s) ds.$$

We can adopt various degrees of polynomials for our convenience.

1) If
$$n = 0$$
,

then
$$I = \Delta x \int_{0}^{s} P_0(s) ds$$

 $P_0 \rightarrow \text{Some constant } C$,

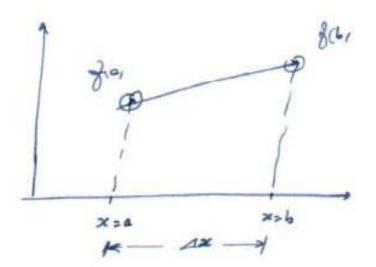


 $I = \Delta x Cs$ This is rectangular formula for numerical integartion.

2) If
$$n = 1$$

$$I = \Delta x \int_{0}^{s} P_{1}(s) ds$$
$$= \Delta x \int_{0}^{s} (f_{0} + s \Delta f_{0}) ds$$

$$= \Delta x \left[sf_0 + \frac{s^2}{2} \Delta f_0 \right]$$



So if your data set is such a way that you used a first degree polynomial between x = a and x = b and if they are two consecutive points, Then at x = a, s = 0

$$x = b$$
, $s = 1$, then: $I = \Delta x \int_{0}^{1} P_{1}(s) ds$

$$\therefore I = \Delta x \left[f_0 + \frac{1}{2} \Delta f_0 \right]$$

$$= \Delta x \left[f_0 + \frac{1}{2} (f_1 - f_0) \right]$$

$$I = \frac{\Delta x}{2} [f_0 + f_1] \rightarrow$$
 This is trapezoidal rule to find area or integration,

If linear splines are used to connect data from $x = x_0$ to $x = x_n$

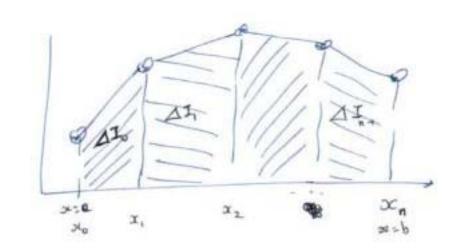
In such situations, the integration $I = \int_{x_0}^{x_n} f(x) dx$ will

be summations $I \approx \Delta I_0 + \Delta I_1 + \cdots + \Delta I_{n-1}$

Now
$$\Delta I_0 = \frac{\Delta x}{2} (f_0 + f_1)$$

Similarly,
$$\Delta I_1 = \frac{\Delta x}{2} (f_1 + f_2)$$

$$\therefore I = \sum_{i=0}^{n-1} \Delta I_i = \frac{1}{2} \sum_{i=0}^{n-1} \Delta x [f_i + f_{i+1}]$$



i.e.
$$I = \frac{1}{2} \Delta x [f_0 + 2f_1 + 2f_2 + \dots + 2f_{n-1} + f_n] \longrightarrow \text{Trapezoidal Rule}$$

Q. What will be the order of approximation error for this trapezoidal rule?

Error for a single interval say
$$\Delta I_i$$
, $E_i = \Delta x \int_0^1 \left[\frac{s(s-1)}{2} \Delta^2 f_0 + \cdots \right] ds$

i.e.
$$E_i = \Delta x \int_0^1 \frac{s(s-1)}{2} \Delta x^2 f''(\zeta) ds$$

$$= -\frac{1}{12} \Delta x^3 f''(\zeta) \rightarrow O(\Delta x^3)$$

For
$$I = \sum \Delta I_i$$

Total error =
$$\sum_{i=0}^{n-1} E_i = \sum_{i=0}^{n-1} \left[-\frac{1}{12} \Delta x^3 f''(\zeta) \right]$$
$$= -\frac{n}{12} \Delta x^3 f''(\zeta)$$
$$= -\left(\frac{x_n - x_0}{\Delta x} \right) \frac{1}{12} \Delta x^3 f''(\zeta) \to O(\Delta x^2)$$

That is, total integration is of $O(\Delta x^2)$

3) When n = 2 for Newton-Cotes integration

Recall
$$I = \Delta x \int_{0}^{s} P_{n}(s) ds$$

If n = 2, then second degree polynomial.

Minimize three points required.

If we choose three consecutive points $x = a = x_0, x = x_1, x = b = x_2$,

for $P_2(s)$ development, then at $x = a = x_0, s = 0$

at
$$x = x_1, s = 1$$

at
$$x = b = x_2$$
, $s = 2$.

$$\therefore I = \Delta x \int_{0}^{2} \left[f_0 + s \Delta f_0 + \frac{s(s-1)}{2} \Delta^2 f_0 \right] ds$$

$$I = \Delta x \left[sf_0 + \frac{s^2}{2} \Delta f_0 + \frac{1}{2} \left(\frac{s^3}{3} - \frac{s^2}{2} \right) \Delta^2 f_0 \right]_0^2$$

$$= \Delta x \left[2f_0 + 2(f_1 - f_0) + \frac{4}{2} \left(\frac{2}{3} - \frac{1}{2} \right) (f_2 - 2f_1 + f_0) \right]$$

$$= \Delta x \left[\frac{1}{3} f_2 + \frac{4}{3} f_1 + \frac{1}{3} f_0 \right]$$

$$I = \frac{\Delta x}{3} \left[f_2 + 4f_1 + f_0 \right] \rightarrow \text{Simpson's } \frac{1}{3}^{\text{rd}} \text{ rule.}$$

 \rightarrow This is only applied only for 1 interval between x_0 and x_2 .

→ If there are many intervals (especially while using splines),

$$I = \Delta I_0 + \Delta I_1 + \dots + \Delta I_n$$

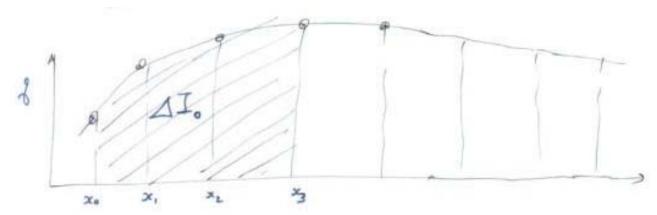
$$= \frac{\Delta x}{3} \left(f_0 + 4f_1 + f_2 \right) + \frac{\Delta x}{3} \left(f_2 + 4f_3 + f_4 \right) + \dots + \frac{\Delta x}{3} \left(f_{n-2} + 4f_{n-1} + f_n \right)$$

$$I = \frac{\Delta x}{3} [f_0 + 4f_1 + 2f_2 + 4f_3 + 2f_4 + \cdots]$$

 \rightarrow The number of data points should be odd and minimum 3.

Simpson's $\frac{1}{3}^{rd}$ rule for evaluating integration of data.

4) When n = 3



$$\Delta I_0 = \Delta x \int_0^s P_3(s) ds$$

$$= \Delta x \int_{0}^{3} \left(f_{0} + s \Delta f_{0} + \frac{s(s-1)}{2} \Delta^{2} f_{0} + \frac{s(s-1)(s-2)}{6} \Delta^{3} f_{0} \right) ds$$

$$= \Delta x \left[s f_0 + \frac{s^2}{2} \Delta f_0 + \left(\frac{s^3}{6} - \frac{s^2}{4} \right) \Delta^2 f_0 + \left(\frac{s^4}{24} - \frac{s^3}{6} + \frac{s^2}{6} \right) \Delta^3 f_0 \right]_0^3$$

$$= \Delta x \left[\frac{3}{8} f_3 + \frac{9}{8} f_2 + \frac{9}{8} f_1 + \frac{3}{8} f_0 \right]$$

$$\Delta I_0 = \frac{3}{8} \Delta x \left[f_0 + 3f_1 + 3f_2 + f_3 \right] \rightarrow \text{Simpson's } \frac{3}{8}^{\text{th}} \text{ rule for numerical integration.}$$

So Total integration for (n + 1) data points using

Simpson's $\frac{3^{th}}{8}$ rule will be,

$$I = \Delta I_0 + \Delta I_1 + \dots + \Delta I_n$$

$$= \frac{3}{8} \Delta x \left[f_0 + 3f_1 + 3f_2 + 2f_3 + 3f_4 + 3f_5 + 2f_6 + \dots + 3f_{n-1} + f_n \right]$$

- → The number of increments here should be multiples of three.
- \rightarrow Total data points = 4 + 3k; where $k \rightarrow$ No. of intervals.
- → The local and global error order can be inferred appropriately.