CE 601: Numerical Methods Lecture 9

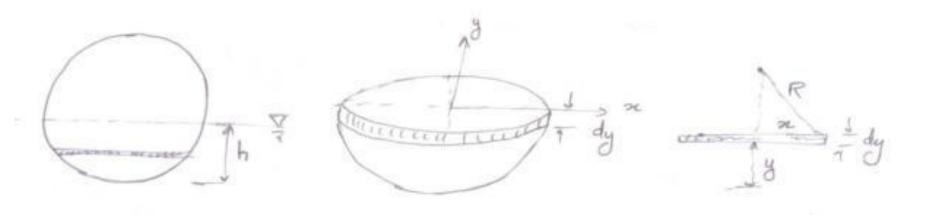
Course Coordinator: Dr. Suresh A. Kartha, Associate Professor, Department of Civil Engineering, IIT Guwahati.

Solution Of Non-Linear Equations

- Q. What is non-linear equation?
- Most of the engineering and scientific problems may not be linear.
- E.g. Let us demonstrate the age old experiment conducted by Archimedes.
- The spherical object of radius R immersed into a fluid (water or oil).
- The object will sink to a depth h from the surface of water.
- At this situation, weight of the spherical object = weight of fluid displaced by the sphere

Weight of sphere =
$$\frac{4}{3}\pi R^3 \rho_s g \ (\rho_s \rightarrow \text{density of sphere})$$

Weight of fluid = $\rho_f V_d g$ ($V_d \rightarrow$ volume of fluid displaced)



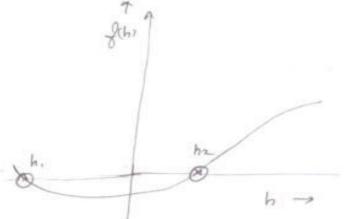
$$V_d = \pi \int_0^h x^2 dy = \pi \int_0^h (2Ry - y^2) dy = \pi h^2 \left(R - \frac{h}{3} \right)$$

$$\therefore \frac{4}{3} \pi R^3 \rho_s g = \pi h^2 \left(R - \frac{h}{3} \right) \rho_f g$$

$$\Rightarrow \rho_f \frac{h^3}{3} - \rho_f R h^2 + \frac{4}{3} R^3 \rho_s = 0 \cdots (1)$$

• On solving eq. (1) you can get the value of *h* to interpret Archimedes's principle.

- Eq. (1) is f(h) = 0, a non-linear equation of variable h.
- You need to find the root of f(h) = 0. h₁, h₂ etc can be the roots of f(h) = 0.



- Q. How to find the roots of Non-Linear equation
 The non-linear equations of form f(h) = 0 can be
 - ✤ Algebraic
 - Trigonometric, logarithmic etc.
 - Differential etc.

- ✓ Two steps are involved to find roots of f(h) = 0 by iterative methods
 - Bound the root
 - Refine the roots
 - ✓ There are -> Closed domain (Bracketing methods)

-> Open domain (Non-bracketing methods)

to solve the non-linear f(h) = 0.

- <u>Closed domain</u>: The root is bracketed initially within two values and the width of this values are shrunk till f(h) = 0.
- Q. How to bound the solution for f(h) = 0.
- Provide an initial estimate of an interval 'a', 'b' within which the true solution h exists.

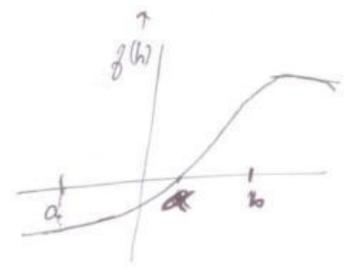
Closed Domain Method

- 1) Method of Bisection
- In this method what you do is initially assumed as interval between 'a' and 'b' such that there exists the value α which gives $f(\alpha) = 0$.
- O <u>Steps:</u>
- Assume a suitable interval between 'a'

and 'b' such that f(x) = 0 exist in

between.

To obtain this [a, b] you may graph the function or evaluate f(a) and f(b) such that f(a).f(b) < 0, then solution lies in between 'a' and 'b'.</p>

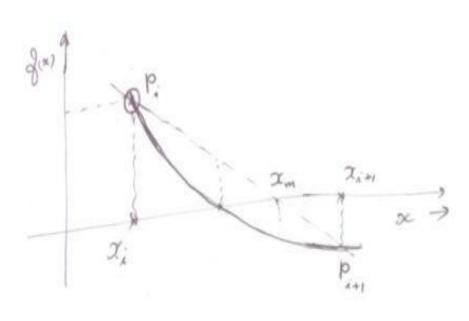


- Half the interval between [a,b] by incorporating c = (a+b)/2. Two intervals [a,c] and [c,b] exist now.
- Check f(a).f(c) and f(c).f(b) and the solution exists in that interval whose product is negative i.e. [a,c] or [c,b].
- Proceed the method with solution interval till solution converges.

- Example: Find the roots of the equation $f(x) = 2 x^2$.
- Initially find a suitable bracket [a,b] such that f(a).f(b) < 0.</p>
- ➢ Let x = 0, f(0) = 2 and x = 2, f(2) = -2. So solution lies between [0,2].

X _i	X _{i+1}	<i>f(x_i)</i>	f(x _{i+1})	X _{i+1/2}	f(x _{i+1/2})
0	2	2.00000	-2.00000	1.00000	1.00000
1.00000	2.00000	1.00000	-2.00000	1.50000	-0.25000
1.00000	1.50000	1.00000	-0.25000	1.25000	0.44000
1.25000	1.50000	0.44000	-0.25000	1.37500	0.10938
1.37500	1.50000	0.10938	-0.25000	1.43750	-0.06641
1.37500	1.43750	0.10938	-0.06641	1.40625	0.02246
1.40625	1.43750	0.02246	-0.06641	1.42188	-0.02174

- > Calculate this iteration till you observe $f(x_{i+1/2}) \approx 0.00$.
- In reality $f(x_{i+1/2}) \approx 0.00$ may not be possible. We may fix a convergence criteria | $f(x_{i+1/2})$ |≤ 1 X 10⁻⁴ etc.
- Method of False position (Regula Falsi Method)
- Unlike bisection method where the interval [*a*,*b*] is halved at every iteration, in regula falsi method as such:



• Bracketed between $[x_{i}, x_{i+1}]$ identify the two points $P_i(x_i, f(x_i))$ and $P_{i+1}(x_{i+1}, f(x_{i+1}))$. • Connect a straight line between P_i and P_{i+1} . The line cuts the x-axis at x_m . • Now we can check in which interval of $[x_i, x_m]$ and $[x_m, x_{i+1}]$

solution lies.

• We determine the slope of the straight line between P_i and P_{i+1} as such

$$m = \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i}$$

• Slope between P_i and P_m will be same m

$$\therefore m = \frac{0 - f(x_i)}{x_m - x_i}$$

i.e., $\frac{-f(x_i)}{x_m - x_i} = \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i}$
$$\Rightarrow x_m = x_i - \frac{f(x_i)(x_{i+1} - x_i)}{f(x_{i+1}) - f(x_i)}$$

We have to select the bracket among [x_i, x_m] and [x_m, x_{i+1}] whichever product of function is negative i.e. f(x_i).f(x_m) <0 or f(x_m).f(x_{i+1}) <0

- <u>Example</u>: Solve $f(x) = x^2 10x + 23$.
- Initially let $x_i = 2.0000$, $f(x_i) = 7$ and $x_{i+1} = 4.0000$, $f(x_{i+1}) = -1$.
- Solution lies between [2,4]. Use convergence criteria $|f(x_m)| \le 1 \ge 10^{-4}$.

$$x_{m} = x_{i} - \frac{f(x_{i})(x_{i+1} - x_{i})}{f(x_{i+1}) - f(x_{i})}$$

X _i	x _{i+1}	<i>f(x_i)</i>	f(x _{i+1})	x _m	f(x _m)
2.0000	4.0000	7.0000	-1.0000	3.7500	-0.4375
2.0000	3.7500	7.0000	-0.4375	3.6471	-0.1696
2.0000	3.6471	7.0000	-0.1697	3.6081	-0.0627
2.0000	3.6081	7.0000	-0.0626	3.5938	-0.0227
2.0000	3.5938	7.0000	-0.0226	3.5887	-0.0081
2.0000	3.5887	7.0000	-0.0082	3.5868	-0.0029
2.0000	3.5868	7.0000	-0.0029	3.5862	-0.0012
2.0000	3.5862	7.0000	-0.0012	3.5859	-0.0003
2.0000	3.5859	7.0000	-0.0003	3.5858	-0.0001

Now $|f(x_m)| \le 1 \ge 10^{-4}$

• So, one solution of $f(x) = x^2 - 10x + 23$

is <u>x = 3.5858</u>.

- From these two methods you can see that closed domain method guarantees convergence. However they may be slow.
- Alternative to overcome the slowness is to use open domain methods.
- Open Domain Methods:
- The roots are not bracketed as like in closed domain methods.
- Fixed-point iteration
- Newton's method
- Secant method
- Muller's method etc

- <u>Fixed Point Iteration</u>
- To solve f(x) = 0.
- Rearrange f(x) in such a way that x = g(x)
 - \rightarrow Provide initial guess for x say x_i
 - \rightarrow Evaluate $g(x_i)$
 - \rightarrow If not equal then, $x_{i+1} = g(x_i)$
 - \rightarrow Evaluate $g(x_{i+1})$
 - \rightarrow Continue till some tolerance ε i.e., $|x_{i+1} x_i| \le \varepsilon$

- <u>Example</u>: Solve $f(x) = f(x) = x^2 10x + 23$.
- $f(x) = x^2 10x + 23$.

Or, x = 10 - (23/x) = g(x)

Assume initial guess

 $x_o = 3.0$ and $\varepsilon = 1 \times 10^{-4}$

i	x _i	g(x _i)	$ x_{i+1} - x_i \le \varepsilon$
0	3.000	2.333333	
1	2.333333	0.1428557	
2	0.1428557	-151.0016	
3	-151.0016	10.15232	
4	10.15232	7.734508	

• Up to 21 iterations required to reach $x_i = 6.414295$.