CE 601: Numerical Methods

Lecture 24

IV-ODE: Second Order Euler Methods

Course Coordinator:
Dr. Suresh A. Kartha,
Associate Professor,
Department of Civil Engineering,
IIT Guwahati.

- In last class we suggested that FDM, whichever you use, should be: Consistent, Stable and Convergent.
- We have already showed that first order explicit Euler scheme is consistent.
- What is meant by FDM being convergent?
- A FDM is said to be convergent if the solutions obtained from the finite difference algebraic equations approach the exact solution of the ODE as $\Delta t \rightarrow 0$.
- A FDM is stable if the finite difference algebraic equation gives bounded solution for a stable ODE.

$$\bullet \quad \frac{dy}{dt} + \alpha y = 0$$

- Let us check for the stability of the explicit
 Euler method solution of the above equation.
- As $f = -\alpha y$, hence

$$y_{n+1} = y_n + \Delta t.(-\alpha y_n)$$

$$\Rightarrow y_{n+1} = y_n (1 - \Delta t.\alpha)$$

• Hence, for stability, we require $-1 \le (1 - \Delta t \cdot \alpha) \le 1$

In general: $y_{n+1} = Gy_n$

where $G \to$ amplification factor. In this case, $G = 1 - \alpha \Delta t$. If y_0 is the initial value and if we have N cycles, the total time $T = N\Delta t$.

Then the solution at T will be

$$y_N = Gy_{N-1} = G^2 y_{N-2} = \dots = G^N y_0$$

For y_N to remain bounded as $N \to \infty$, we need to have

$$|G| \le 1.0$$
. (Also $y_{n+1} = G^{n+1}y_0$)

If we utilise implicit Euler scheme for $\frac{dy}{dt} + \alpha y = 0$,

i.e.
$$y_{n+1} = \frac{y_n}{1 + \alpha \Delta t} = Gy_n$$
; where $G = \frac{y_n}{1 + \alpha \Delta t} \le 1.0$

The Single Point Methods

- Both the first order Euler's explicit scheme and implicit schemes are single-point methods to arrive at the solution.
- In single point methods, we use data at a single point 'n' to advance to the solution at point n+1.
- The earlier mentioned methods were firstorder schemes.
- We can also have second order single point methods.

- Second order single point method
- For the general non-linear IV-ODE (first order)

$$\frac{dy}{dt} = f(t, y); \quad y(t_0) = y_0$$

The time scale can be discretized as:

Recall the centered difference formula

$$\frac{dy}{dt}\bigg|_{t_{n+1/2}} \approx \frac{y_{n+1} - y_n}{\Delta t} \quad O(\Delta t^2)$$

$$\frac{dy}{dt}\bigg|_{t_{n+1/2}} \approx \frac{(1 + t_n)^2}{\Delta t} \quad O(\Delta t^2)$$

$$\left. \frac{dy}{dt} \right|_{t_{n+1/2}} = f(t_{n+1/2}, y_{n+1/2}) = f_{n+1/2}$$

Using FDM, we get,

$$y_{n+1} = y_n + \Delta t. f_{(n+\frac{1}{2})}; \qquad O(\Delta t^3)$$

$$\to (1)$$

This is mid-point method.

This approach is difficult, as we need to determine the unknown $f_{n+1/2}$ as well.

A modification is suggested to mid-point method by a predictor-corrector strategy:

i.e.
$$\begin{vmatrix} y_{n+1/2}^{P} = y_{n} + \frac{\Delta t}{2} \cdot f_{n} \\ y_{n+1}^{C} = y_{n} + \Delta t \cdot f_{n+1/2}^{P} \end{vmatrix} \rightarrow (2)$$

This is a predictor-corrector method (also called Modified Mid-point method)

Now recall the mid-point method

$$y_{n+1} = y_n + \Delta t. f_{n+\frac{1}{2}};$$

- The quantity $f_{n+\frac{1}{2}}$ can also be evaluated using the following strategy,
- Keeping $f_{n+\frac{1}{2}}$ as base point and form Taylor's series for f_n and f_{n+1}

$$f_n = f_{(n+\frac{1}{2})} - \left(\frac{\Delta t}{2}\right) \frac{df}{dt}\Big|_{t_{(n+1/2)}};$$
 $O(\Delta t^2)$

$$f_{n+1} = f_{(n+\frac{1}{2})} + \left(\frac{\Delta t}{2}\right) \frac{df}{dt}\Big|_{t_{(n+1/2)}};$$
 $O(\Delta t^2)$

From the above two equations, we have

$$f_{(n+\frac{1}{2})} = \frac{1}{2} \cdot (f_n + f_{n+1});$$
 $O(\Delta t^2)$

Hence,

$$y^{(n+1)} = y^n + \frac{\Delta t}{2} \cdot (f_n + f_{n+1}); \qquad O(\Delta t^3) \rightarrow (3)$$

 This is the implicit trapezoidal finite-difference equation. This can also be evaluated using the following predictor and corrector steps

$$\begin{vmatrix} y_{n+1}^{P} &= y_{n} + \Delta t. f_{n} \\ y_{n+1}^{C} &= y_{n} + \Delta t. \left(\frac{f_{n} + f_{n+1}^{P}}{2} \right) \end{vmatrix} \rightarrow (4)$$

- This equations are called modified trapezoidal method or Modified Euler's finite difference equation.
- Modified Euler's FDE is widely used to solve IV-ODE and the method is second order that suggests the truncation error reduces at faster rate.

- Stability Criteria for Modified Euler Method
- For the linear first order IV-ODE

$$\frac{dy}{dt} + \alpha y = 0; \qquad y(t_0) = y_0$$

Modified Euler method

$$y_{n+1}^{P} = y_n + \Delta t. f_n$$

$$y_{n+1}^{C} = y^n + (\Delta t/2). (f_n + f_{n+1}^{P})$$

Here, we have

$$f = -\alpha y$$
, $\therefore f_n = -\alpha y_n$

$$y_{n+1}^{P} = y_n + \Delta t.(-\alpha y_n) = (1 - \alpha \Delta t) y_n$$

$$y_{n+1}^{C} = y_n - \alpha (\Delta t/2) y_n - \alpha (\Delta t/2) y_{n+1}^{P}$$

$$= y_n - \alpha (\Delta t/2) y_n - \alpha (\Delta t/2) \{ y_n.(1 - \alpha \Delta t) \}$$

$$= y_n - \alpha (\Delta t/2) y_n - \alpha (\Delta t/2) y_n + \alpha^2.(\Delta t^2/2) y_n$$

$$= y_n \{ 1 - \alpha \Delta t + (\alpha \Delta t)^2 / 2 \}$$

Hence, the amplification factor:

$$G = \left\{1 - \alpha \Delta t + (\alpha \Delta t)^2 / 2\right\}$$

 For stable results, the following condition has to be satisfied

$$|G| \le 1.0$$

- So, $|G| = \left|1 \alpha \Delta t + \left(\alpha \Delta t\right)^2 / 2\right| \le 1.0$
- For the above condition to be true, we require $\alpha \Delta t \leq 2.0$

Runge-Kutta Methods

 Till now we discussed about the various second order single point Euler methods to solve the general first order non-linear IV-ODE

$$\frac{dy}{dt} = f(t, y); \quad y(t_0) = y_0$$

• Runge-Kutta methods are single point methods that evaluate change in y i.e. $\Delta y = y_{n+1} - y_n$ using several weighted combinations of Δy_i

i.e.
$$y_{n+1} = y_n + \Delta t f_n$$

or
$$y_{n+1} = y_n + \Delta t f_{n+1}$$

We can define
$$\Delta y = y_{n+1} - y_n$$

or, $\Delta y = \Delta t f_n$
or
 $\Delta y = \Delta t f_{n+1}$
or
etc.

This change in y,

$$\Delta y = C_1 \times \Delta y_1 + C_2 \times \Delta y_2 + C_3 \times \Delta y_3 + \dots + C_n \times \Delta y_n$$

 $C_i \rightarrow$ weighting factors

 $\Delta y_i = \Delta t \times f(t, y)$; where f(t, y) is evaluated at some point in the range $t_n \le t \le t_{n+1}$.

 \Rightarrow The number of weighing factors (or no. of Δy_i) selected decides the order of the R-K method.

 \Rightarrow e.g. The first order R-K method will be same as explicit or implicit Euler method

$$y_{n+1} = y_n + \Delta t \times f_n$$
 or

$$y_{n+1} = y_n + \Delta t \times f_{n+1}$$

 \Rightarrow The second order R-K method is:

$$y_{n+1} = y_n + \left[C_1 \Delta y_1 + C_2 \Delta y_2 \right]$$

where $\Delta y_1 = \Delta t \times f_n$

$$\Delta y_2 = \Delta t \times f(t, y); \quad t_n \le t \le t_{n+1}$$

Let's write: $\Delta y_2 = \Delta t \times f(t_n + a\Delta t, y_n + b\Delta y_1)$

We have to find the appropriate values of a and b for this case.

 \Rightarrow 2nd order R-K method gives:

$$y_{n+1} = y_n + C_1 \times \Delta t \times f_n + C_2 \times \Delta t \times f(t_n + a\Delta t, y_n + b\Delta y_1)$$

Keeping the time grid point n as the base point and f_n as base value,

$$f(t,y) = f_n + (t - t_n) \frac{\partial f}{\partial t} \bigg|_{t_n} + (y - y_n) \frac{\partial f}{\partial y} \bigg|_{t_n} + \cdots$$

Here $t = t_n + a\Delta t$ and $y_n + b\Delta y_1$,

$$\therefore f(t_n + a\Delta t, y_n + b\Delta y_1) = f_n + (a\Delta t)\frac{\partial f}{\partial t}\bigg]_{t_n} + (b\Delta y_1)\frac{\partial f}{\partial y}\bigg]_{t_n} + \cdots O(\Delta t^2)$$