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Galerkin FEM

We were discussing on how Galerkin FEM
can be applied for 2-D cases.

— to solve 2-D Laplace equation

(or Poisson equation).
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— two dimensional domain was rectangular in shape.
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— In our case we discretised the domain

using rectangular elements.

-. The x—axis is discretised 1 =1,2,3,..., | nodes or discrete points
The y—axis is discretised j =1,2,3,..., J nodes.
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.. For this rectangular domain there are a total of (I x J) discrete nodes.
— Any general node is given as (i, J) in the suffix.

— Four nodes constitute an jr) _

rectangular element. There lf

are a total of (1 -1)x(J -1 iJ |
elements. Any general element | |

IS given as |1, || In the superfix.

— As described for the one-dimensional case, there will be

combination of approximating polynomial for ' f ' in the entire domain
-1 J-1

e f(xy)~ f(xy)=) > fiil(xy)

i=1 j=1

(i.e. Sum of series of local interpolating polynomials)



— For an element |i, j| — the approximation is f'1(x, y)

— As there are four nodes (1, J),(1+1, ),(1+1, j+1) and (1, | +1)

assoclated with the element |1, j|, the approximation is given as:

U0 y) = N (6 )+ N, (6 y) + FNG (% y) + F,N, (X, )
I.e. for the element |1, j|, the global node numbers are replaced

by local node numbers 1,2,3,4 and N,, N,, N,, N, are

shape functions for the element |i, ||




— We defined the Residual for the problem
and evaluated weighted integral.
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To do integration: see W
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Using Stokes' theorem
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The line integral describes the flux g, normal to the outer
boundary B of the solution domain.
— For all interior elements that do not coincide

with the outer boundary, you have @ands =0
B

— For Neumann BCs you have values for g‘Sands



.. Globally the integral will be in terms of approximate solution:
L(f(x,y))= 1B 4 28 0l 2 +<I>ands =0
B

where "] :—H oW of i of +WF |dxdy for interior elements.
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In Galerkin approach we use the shape functions itself as the
weighing function W.

Recall, {'7(x, §) = f,x (L= X~y + X §)+ f, x (X~ X V)
+H,x(Xy)+ T, x(Y-XY)

of _ _ = =
e fx(-1+¥)+ f,x(1-y)+ f,x(¥)+ f, x(-Y)
Similarly, %— fox(=1+X)+ f, x(=X)+ f,x(X)+ f, x(1-X)




— As the weighing functions N"/1(X, y) are applicable

only in the element |1, j| and elsewhere being zero we can

write total integral
i1 Vit
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l.e. Integration of the |I, J| element.

— Adopting local system and also the normalised coordinates

for this element |1, j|, we need to transform
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— In the integration the four shape functions are used
N,(X,¥)=(1-X-y+X)

oN, oN,

You can have — =-1+Y; =-1+X
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Substitute W = N, in equation 1 and obtain first element equation
Similarly put W = N, and obtain second element equation

Again third and fourth element equations are obtained by
substituting W = N, and W = N, in equation 1.

— The general node (i, J) Is part of four elements
=1, j=1, (1, j =201, jL1=1 |

— Using the above procedure,

four element equations each for the L bJ
remaining three elements (i-1, ) ) (i+1,j)
i—1 j—1.,1i, j—1|, and [i—1, j i1, j-1 i, j-1

(i-1, j-1) (i, j-1 (it1, j-1)
are also generated. d -0 j



— The corresponding element equations for which

the shape functions have magnitude 1.0 at the node (i,j)
are assembled to obtain nodal equations for (i, J).

— The assembled nodal equation is subsequently applied
at each of the unknown nodes in the domain.

— System of algebraic equations in nodal values

fiis foq0eeen fij0en 1) 5 are generated.

— Adjust for boundary conditions.
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— The nodal equation is modified for those
elements that are part of the domain boundary

by incorporating the term CJSands
B

— This modification is required only for those elemnts having

non-zero Neumann B.C.s

— The system of algebraic equations are solved

to obtain the nodal values.
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Finite-Difference Method for Hyperbolic
Partial Differential equations

As discussed, the spatial first derivative in
hyperbolic PDE may be subjected to backward
difference formula (Upwind scheme).

There are Lax-Wendroff methods to solve
PDEs:

Lax and Wendroff developed o(ax*) and O(Atz)

approximations for solving convection
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Lax-Wendroff one step:

Keeping base point as f(x.t)— f.
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e Using second order centered-difference

scheme:
f _ fm 1 { £ _2 £ 4 £ j.Atz
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e Let us define convection number as c=—.
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This is the Lax-Wendroff one step

approximation.

Here, c="2' <10 for stability.
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