CE 601: Numerical Methods
Lecture 10

Open Domain Methods For Solutions of Non-Linear Equations

Course Coordinator: Dr. Suresh A. Kartha, Associate Professor, Department of Civil Engineering, IIT Guwahati.

- We have Seen the two closed domain methods i) Method of bisection and ii) Method of false position.
- For any non-linear equation f(x) = 0, if say ' α 'is one exact solution, and if by using closed domain method if the iteration begins with x_o .

The iterative sequence improves $x_1 \rightarrow x_1 \rightarrow x_2 \dots$

This will or should converge to α .

So, Error in any iteration $e_i = \alpha - x_i$ and $\lim_{i \to \infty} \frac{|e_i|}{|e_i|}$

$$\lim_{i \to \infty} \frac{|e_{i+1}|}{|e_i|^p} = C$$

C is asymptotic error constant.

If p = 1, linear convergence, p = 2, quadratic order of convergence, etc.

- For method of bisection, p = 1 and $C = \frac{1}{2}$.
- Method of false position, p = 1, C depends on the slope and curvature of the function.

- From these two methods you can see that closed domain method guarantees convergence. However order of convergence was linear.
- Alternative to overcome the slowness is to use open domain methods.
- Such methods require only one or two points to start the iteration.
- Open Domain Methods:
- The roots are not bracketed as like in closed domain methods.

Fixed-point iteration

- Newton's method
- Secant method
- Muller's method etc

- <u>Fixed Point Iteration</u>
- We have seen the non-linear equation is f(x) = 0.
- All equations of the form f(x) = 0 can be written as x = g(x).
- E.g. in the example problem $f(x) = 2 x^2 = 0$

i.e.
$$0 = 2/x - x$$

or, $x = 2/x$ ($x = g(x)$)

- If β is the root of f(x) = 0, then according to this form $\beta = g(\beta)$ i.e. the term function suggest about mapping of the value of x to a new location. If the mapped value and value of 'x', then it becomes a fixed point.
- Now in this method the process is
 - \circ To solve f(x) = 0.
 - Rearrange f(x) in such a way that x = g(x)
 - \rightarrow Provide initial guess for x say x_i
 - \rightarrow Evaluate $g(x_i)$
 - \rightarrow If not equal then, $x_{i+1} = g(x_i)$
 - \rightarrow Evaluate $g(x_{i+1})$
 - → Continue till some tolerance ε i.e., $|x_{i+1} x_i| \le \varepsilon$

- <u>Example</u>: Solve $f(x) = f(x) = x^2 10x + 23$.
- $f(x) = x^2 10x + 23$.

Now develop x = g(x) form,

x = 10 - (23/x) = g(x)

Start initially say $x_o = 3.00000$ and

suggest tolerance $\varepsilon = 1 \times 10^{-4}$ for $|x_{i+1} - x_i|$.

i	X i	g(x _i)	$ x_{i+1} - x_i \leq \varepsilon$
0	3.00000	3.28571	
1	3.28571	3.42553	
2	3.49838	3.53758	
3	3.53758	3.55904	
:	:	:	
12	3.58533	3.58553	1.9943 X 10 ⁻⁴
13	3.58553	3.58564	1.11478 X 10 ⁻⁴
14	3.58564	3.58571	0.6231 X 10 ⁻⁴

- <u>Convergence criteria for fixed-point iteration</u>
- Recall in this method we converted f(x) = 0to x = g(x).
- \succ Using iteration methods $x_{i+1} = g(x_i)$

Q. Do you think the form x = g(x) will converge to solution every time? > In the Archimedes's principle equation

$$\rho_f \frac{h^3}{3} - \rho_f Rh^2 + \frac{4}{3} R^3 \rho_f = 0$$

If $\rho_f = 1.05 \text{ g/c.c.}, \rho_s = 1.25 \text{ g/c.c.}$ and $R = 1.0 \text{ cm}$, then
 $0.35h^3 - 1.05h^2 + 1.66667 = 0$
 $\Rightarrow 0.35h^2(h-3) = -1.66667$
 $\Rightarrow h - 3 = \frac{-1.66667}{0.35h^2}$
 $\Rightarrow h = 3 - \frac{1.66667}{0.35h^2}$
 $\Rightarrow h = g(h)$

> If you start with initial guess say h = 3.00000, it may not converge to the solution.

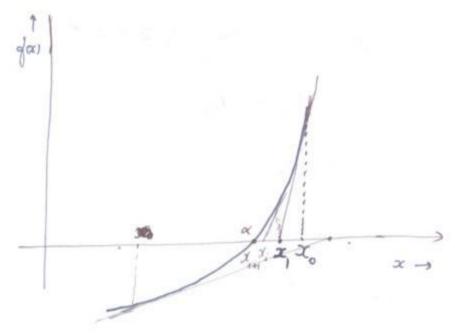
➤ That is, there is some convergence criteria for this procedure

- Now here $x_{i+1} = g(x_i)$. If α is one of the exact root of f(x) = 0 and we are doing iteration to find this α , then Error in $(i+1)^{\text{th}}$ iterations $e_{i+1} = x_{i+1} \alpha$ i.e. $e_{i+1} = x_{i+1} - \alpha = g(x_i) - g(\alpha)$.
- Let us use Taylor's series for expanding g(α) with respect to the base point xi,

i.e. $g(\alpha) = g(x_i) + g'(x_i)(\alpha - x_i) + (1/2!)g''(x_i)(\alpha - x_i)2 + ...$ Truncating this series after final differential terms, you can get

 $g(\alpha) = g(x_i) + g'(\zeta)(\alpha - x_i) \quad ; \text{ where } x_i \leq \zeta \leq \alpha$ So, $e_{i+1} = g(x_i) - [g(x_i) + g'(\zeta)(\alpha - x_i)]$ $= -g'(\zeta)(\alpha - x_i)$ Note, $e_i = x_i - \alpha.$ So, $e_{i+1} = g'(\zeta) e_i$

- For this iteration process to converge, we need to have $e_{i+1} < e_i$ or, $|e_{i+1}/e_i| = g'(\zeta) < 1.000$
- If | e_{i+1} / e_i | > 1.000, then iteration diverges (no solution will be obtained).
- <u>Newton's Method:</u>
- Also called Newton-Raphson method.
- One of the most well known and widely used open domain method for solving non-linear equations.
- You start with initial guess say x_o .
- Through the graphical point $(x_o, f(x_o))$ a tangent to the curve f(x) is drawn.
- This tangent intersects the x-axis at x₁. This is improved point of x.



- Again a tangent is drawn at $(x_1, f(x_1))$
- Similar procedure continued till *xi+1* converges with the exact solution *α*.
- At any (i+1)th iteration, x_{i+1} is obtained.
- At convergence $f(x_{i+1}) \rightarrow f(\alpha) = 0$.
- To obtain the improved point xi+1 from the previous point x_i, we can use straight line principle.
- Slope of tangential straight line passing $(x_i, f(x_i))$ is $g'(x_i) = (g(x_{i+1} - g(x_i))/(x_{i+1} - x_i) = (0 - f(x_i))/(x_{i+1} - x_i)$.
- Note that the slope of the straight line g(x) passing through (x_i, f(x_i)) is same as slope of the curve passing through (x_i, f(x_i)).
 So, g'(x_i) = f'(x_i) = (0 f(x_i))/(x_{i+1} x_i)
 or, x_{i+1} = x_i f(x_i)/f'(x_i).
- The process repeated till convergence $|x_{i+1} x_i| \le \varepsilon$ or. $|f(x_{i+1})| \le \varepsilon$ etc.

- <u>Example</u>: Solve the function $f(x) = x^2 10x + 23$ using Newton-Raphson method.
- Recall while doing regula-falsi method we identified that the root lies in between [0,4]. But it took nearly 10 iterations to arrive at the solution. That was because it was closed domain approach.
- Here let us start with initial guess $x_0 = 0$.

 $f(x) = x^2 - 10x + 23$ and f'(x) = 2x - 10

i	X _i	f(x _i)	f'(x _i)	X _{i+1}	x _{i+1} - x _i
0	1.00000	14.0000	-8.0000	2.75000	1.7500
1	2.75000	3.06250	-4.5000	3.43055	0.68055
2	3.43055	0.46317	-3.1389	3.57811	0.14756
3	3.57811	0.021771	-2.84378	3.58576	0.00765
4	3.58576	7.48 X 10 ⁻⁵	-2.82848	3.58578	2 X 10 ⁻⁵

• You can see that the solution here converged in 4 iterations. That is N-R method is fast. Why?