CE 601: Numerical Methods
Lecture 12

Solutions of Polynomials & System of Non-Linear Equations

Course Coordinator: Dr. Suresh A. Kartha, Associate Professor, Department of Civil Engineering, IIT Guwahati.

Solutions of Polynomials

- While using Newton's method, after finding first root x=α, then we need to deflate the polynomial to find subsequent roots.
- Q. What happens to Newton's method or how Newton's method behave if there are multiple roots for a polynomial (or function)
- Newton's method of Multiple Roots

$$P_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

Let $x=\alpha$ be a root that occurs 'm' times.

$$x_{i+1} = x_i - f(x_i) / f'(x_i)$$

→ The Newton's method earlier was told to have quadratic convergence.

→ But in case of multiple roots the Newton's method reduces to linear convergence.

e.g. $P_3(x) = x^3 - 1.2502x^2 - 1.5625x + 1.95344 = 0$

Now $f'(x) = 3x^2 - 2.5004x - 1.5625$

i	X _i	f(x _i)	f'(x _i)	Error
0	1.50000	0.17174	1.43690	0.17174
1	1.38048	0.04472	0.70292	0.04472
2	1.31686	0.01144	0.34718	0.01144
3	1.28391	0.00290	0.17249	0.00290
4	1.26710	0.00073	0.08587	0.00073

 \rightarrow The solution is not yet converged. It is taking more time, even after that *error* < 10⁻² since iteration 3.

 \rightarrow This is because the Newton's method above is not quadratically converging.

 \rightarrow To form a quadratic function, you require at least three known points.

• For $P_n(x) = a_0 + a_1x + a_2x^2 + \dots + a_nx^n = f(x)$ If $x=\alpha$ is a root that appears 'm' times, then we can deflate the polynomial as

$$P_n(x) = (x - \alpha)^m A(x) = f(x)$$

where $x=\alpha$ is not a root of A(x).

Newton's method:

$$\begin{aligned} x_{i+1} &= x_i - \frac{f(x_i)}{f'(x_i)} \\ \Rightarrow x_{i+1} &= x_i - \frac{A(x_i)(x_i - \alpha)^m}{\left[mA(x_i)(x_i - \alpha)^{m-1} + A'(x_i)(x_i - \alpha)^m\right]} \\ \Rightarrow x_{i+1} - \alpha &= x_i - \alpha - \frac{A(x_i)(x_i - \alpha)^m}{\left[mA(x_i)(x_i - \alpha)^{m-1} + A'(x_i)(x_i - \alpha)^m\right]} \\ \Rightarrow x_{i+1} - \alpha &= \left(x_i - \alpha\right) \left[1 - \frac{1}{m + \frac{A'(x_i)(x_i - \alpha)}{A(x_i)}}\right] \end{aligned}$$

• When 'i' is sufficiently large and $x_i \rightarrow \alpha$, then

$$e_{i+1} = e_i (1-1/m)$$

that is the rate of convergence is linear.

 To overcome this situation if you know the multiplicity 'm' of a root of the P_n(x)=f(x), then we need to develop another function.

 $g(x) = [f(x)]^{1/m}$ such that $x = \alpha$ is also the root of the function $g(x) = 1/[f(x)]^m$.

<u>Same example</u>

 $P_3(x) = x^3 - 1.2502x^2 - 1.5625x + 1.95344 = 0 = f(x)$ $f'(x) = 3x^2 - 2.5004x - 1.5625$

If we know that one root exists two times, then

$$x_{i+1} = x_i - 2\frac{f(x_i)}{f'(x_i)}$$

i	X _i	f(x _i)	f'(x _i)	Error
0	1.50000	0.17174	1.43690	0.17174
1	1.26096	0.00030	0.05466	0.00030
2	1.24998	2.5 X 10 -6	-	2.5 X 10 -6

- If the multiplicity of the root is unknown, then how to use Newton's method?
- Assign a new function u(x) = f(x)/f'(x)
 If x=α appears 'm' times, then

$$f(x) = (x - \alpha)^m A(x); \quad A(x) \neq 0.$$

$$\therefore u(x) = \frac{(x - \alpha)^m A(x)}{m(x - \alpha)^{m-1} A(x) + (x - \alpha)^m A'(x)}$$

i.e.,
$$u(x) = \frac{(x - \alpha)A(x)}{mA(x) + (x - \alpha)A'(x)}$$

• If f(x) = 0 is having $x = \alpha$ as a root, then $x = \alpha$ is also root of u(x).

$$\therefore x_{i+1} = x_i - \frac{u(x_i)}{u'(x_i)}$$
$$u'(x) = \frac{f'(x)f'(x) - f(x)f''(x)}{[f'(x)]^2}$$
$$\therefore x_{i+1} = x_i - \frac{f(x_i)f'(x_i)}{[f'(x_i)]^2 - f(x_i)f''(x_i)}$$

 You can see that value of 'm' is not used in the above expression.

System of Non-linear Equations

- As discussed in earlier chapters many of the engineering and scientific problems can be mathematically described.
- During these descriptions we may arrive at system of equation
 - The system of linear equations already seen.
 - The system of non-linear equations also appear for many phenomena.

How to solve such systems?

i.e.
$$f(x_1, x_2, x_3, ..., x_n) = 0$$

 $g(x_1, x_2, x_3, ..., x_n) = 0$
 \vdots

The solution is $\{x\} = \{x_1 \ x_2 \ x_3 \ \cdots \ x_n\}^T$

• <u>A simple 2-D system</u> f(x,y) = 0

• We need to find the solution $\{x\} = \{x \ y\}^T$.

 $\,\circ\,$ In layman's method we can find the solution.

- Plot the curves f(x,y)=0 in the x-y plane. These may be more than one curve.
- Plot the curves having g(x,y)=0 in the same plane.
- The intersection points of f(x,y)=0 and g(x,y) curve gives the solution.
- Due to non-linearity these may be many roots for a system.

Iterative Method to solve non-linear systems

- The iterative methods like
 - Fixed point iteration
 - Newton's method
 - Secant method
 - Muller's method, etc.

can be used to solve the system of non-linear equations.

e.g. for a system of two linear equations

$$f(x,y) = 0$$
$$g(x,y) = 0$$

- Start with some initial guess $(x^{(0)}, y^{(0)})$.
- Iterate and at nay iteration 's' you have (x^(s),y^(s)).
- Continue iteration till convergence.
- Now at any iteration 's', (x^(s), y^(s)) is known, we can use Taylor's series for *f(x,y)*.

$$f(x, y) = f(x^{(s)}, y^{(s)}) + \frac{\partial f}{\partial x}\Big|_{(x^{(s)}, y^{(s)})} (x - x^{(s)}) + \frac{\partial f}{\partial y}\Big|_{(x^{(s)}, y^{(s)})} (y - y^{(s)}) + \dots$$

Similarly,

$$g(x, y) = g(x^{(s)}, y^{(s)}) + \frac{\partial g}{\partial x}\Big|_{(x^{(s)}, y^{(s)})} (x - x^{(s)}) + \frac{\partial g}{\partial y}\Big|_{(x^{(s)}, y^{(s)})} (y - y^{(s)}) + \dots$$

Truncating after first order terms, we have

$$f(x, y) = f^{(s)} + \frac{\partial f}{\partial x} \Big|^{(s)} (x - x^{(s)}) + \frac{\partial f}{\partial y} \Big|^{(s)} (y - y^{(s)})$$
$$g(x, y) = g^{(s)} + \frac{\partial g}{\partial x} \Big|^{(s)} (x - x^{(s)}) + \frac{\partial g}{\partial y} \Big|^{(s)} (y - y^{(s)})$$
$$\text{where } f^{(s)} = f(x^{(s)}, y^{(s)}); \quad \frac{\partial f}{\partial x} \Big|^{(s)} = \frac{\partial f}{\partial x} \Big|_{(x^{(s)}, y^{(s)})} \text{ and same for other terms.}$$

∴ We will get,

$$\frac{\partial f}{\partial x}\Big|^{(s)} (x - x^{(s)}) + \frac{\partial f}{\partial y}\Big|^{(s)} (y - y^{(s)}) = -f^{(s)}$$
$$\frac{\partial g}{\partial x}\Big|^{(s)} (x - x^{(s)}) + \frac{\partial g}{\partial y}\Big|^{(s)} (y - y^{(s)}) = -g^{(s)}$$

Let us define $\Delta x^{(s)} = x - x^{(s)}$ and $\Delta y^{(s)} = y - y^{(s)}$ Therefore,

$$[J]^{(s)} \{\Delta x\}^{(s)} = -\{f\}^{(s)}$$

Therefore, $\{\Delta x\}^{(s)} = -([J]^{(s)})^{-1} \{f\}^{(s)}$
And; $\{x\}^{(s+1)} = \{x\}^{(s)} + \{\Delta x\}^{(s)}$
 $\{x\}^{(s+1)} = \{x\}^{(s)} - ([J]^{(s)})^{-1} \{f\}^{(s)}$