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We have already discussed about the characteristics of
PDE for both quasi-linear second order PDE as well as
quasi linear first order PDE.

Characteristics are paths through which information is
propagated.

For two-dimensional solution domain D(x,y) of the
qguasi-linear second order PDE, the characteristics are
given by the slope
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For two-dimensional solution domain D(x,t) of the
quasi-linear first order PDE, the slope (or characteristic)
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The parabolic PDE:
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Here, the solution domain is D(x,t).

From the characteristic analysis, we have
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Hence, the characteristic equation will be

a(dt)” =0= dt
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So, tiIs a constant.

Hence, the characteristics are lines of constant
time.

We can see that there are two real, repeated
roots associated with characteristic equation

adt* =0

Speed of propagation of information along
these characteristic paths can be described as
such:

dx dx
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e So, information propagates at infinite speed
along lines of constant time.

e Both characteristics have zero slope in the x-t
plane (Infinite information propagation).



e Solution at point ‘P’ depends on entire
solution domain below including horizontal
line of P.

e Solution at P influences entire solution

domain above including horizontal time line of
P.

e When we use numerical methods, the infinite
information propagation speed should be
taken into account.
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Writing the equation as
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We have

That is, for hyperbolic equation, the
information propagates at a finite speed of £C.



 These characteristics have finite information
propagation speed
— Finite domain of dependence
— Finite range of influence

* You have seen the FDM applications to elliptic PDEs.
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Parabolic PDE:

They are propagation problems.

Consider the diffusion equation:
of 0° f
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There are semi-infinite domain of dependence
and semi-infinite range of influence for
parabolic PDEs.

Hence, we need to adopt marching methods
to solve parabolic PDEs.



 March the solution at time level 'n' to time
level 'n+1" j.e. using the information at time
t, the properties at t_,, can be identified.



e Forward Time Centered Space (FTCS) Method:

 Here, the technique is explicit, the infinite
propagation speed is approximated by finite

propagation speed c XX
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 We need to check for the consistency, stability,
order etc.
oAt

* We can define diffusion number as d = 7

RO = O d (£ -2.£0 + £D)
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e Explicit FTCS method needs to be checked for
stability.
f =G.f™; G = Amplification factor
G| <1.0 for stability.



e Backward Time Centered Space (BTCS):

e The BTCS formulation takes into account
infinite propagation speed.
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Crank-Nicholson Method

To solve the diffusion equation:
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The temporal and spatial domains are
discretized with intervals At and Ax

respectively.
Now,
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e |If we try to evaluate
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 From our earlier discussion, we can easily
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e Now, we can also write
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