CE 601: Numerical Methods

Lecture 32

PDE Characteristics & FDM

Course Coordinator:
Dr. Suresh A. Kartha,
Associate Professor,
Department of Civil Engineering,
IIT Guwahati.

- We have already discussed about the characteristics of PDE for both quasi-linear second order PDE as well as quasi linear first order PDE.
- Characteristics are paths through which information is propagated.
- For two-dimensional solution domain D(x,y) of the quasi-linear second order PDE, the characteristics are given by the slope

$$\frac{dy}{dx} = \frac{B \pm \sqrt{B^2 - 4AC}}{2A}$$

 For two-dimensional solution domain D(x,t) of the quasi-linear first order PDE, the slope (or characteristic)

$$\frac{dx}{dt} = \frac{b}{a}$$

- The parabolic PDE: $\frac{\partial f}{\partial t} = \alpha \frac{\partial^2 f}{\partial x^2}$
- Here, the solution domain is D(x,t).
- From the characteristic analysis, we have

$$\begin{bmatrix} \alpha & 0 & 0 \\ dx & dt & 0 \\ 0 & dx & dt \end{bmatrix} \begin{cases} \frac{\partial^2 f}{\partial x^2} \\ \frac{\partial^2 f}{\partial x \partial t} \\ \frac{\partial^2 f}{\partial t^2} \end{cases} = \begin{cases} \frac{\partial f}{\partial t} \\ d\left(\frac{\partial f}{\partial x}\right) \\ d\left(\frac{\partial f}{\partial t}\right) \end{cases}$$

Hence, the characteristic equation will be

$$\alpha (dt)^2 = 0 \Rightarrow dt = \pm 0$$

- So, *t* is a constant.
- Hence, the characteristics are lines of constant time.
- We can see that there are two real, repeated roots associated with characteristic equation $\alpha dt^2 = 0$
- Speed of propagation of information along these characteristic paths can be described as such:

Speed =
$$c = \frac{dx}{dt} = \frac{dx}{0} = \pm \infty$$

- So, information propagates at infinite speed along lines of constant time.
- Both characteristics have zero slope in the x-t plane (Infinite information propagation).

- Solution at point 'P' depends on entire solution domain below including horizontal line of P.
- Solution at P influences entire solution domain above including horizontal time line of P.
- When we use numerical methods, the infinite information propagation speed should be taken into account.

• For hyperbolic PDEs: $\frac{\partial^2 f}{\partial t^2} = c^2 \frac{\partial^2 f}{\partial x^2}$

• Writing the equation as $\frac{\partial^2 f}{\partial t^2} - c^2 \frac{\partial^2 f}{\partial x^2} = 0$

• We have
$$\frac{dx}{dt} = \frac{0 \pm \sqrt{0 + 4c^2}}{2} \Rightarrow \frac{dx}{dt} = \pm c$$

• That is, for hyperbolic equation, the information propagates at a finite speed of $\pm c$.

- These characteristics have finite information propagation speed
 - Finite domain of dependence
 - Finite range of influence
- You have seen the FDM applications to elliptic PDEs.

• Parabolic PDE:

- They are propagation problems.
- Consider the diffusion equation:

$$\frac{\partial f}{\partial t} = \alpha \frac{\partial^2 f}{\partial x^2}$$

- There are semi-infinite domain of dependence and semi-infinite range of influence for parabolic PDEs.
- Hence, we need to adopt marching methods to solve parabolic PDEs.

• March the solution at time level n to time level n+1 i.e. using the information at time t_n , the properties at t_{n+1} can be identified.

- Forward Time Centered Space (FTCS) Method:
- Here, the technique is explicit, the infinite propagation speed is approximated by finite propagation speed $C_n = \frac{\Delta x}{\Delta t}$

$$\frac{\partial f}{\partial t} = \alpha \frac{\partial^2 f}{\partial x^2} \quad \text{(Parabolic PDE)}$$

$$\frac{\partial f}{\partial t} \Big|_{i}^{(n)} = \frac{f_i^{(n+1)} - f_i^{(n)}}{\Delta t}$$

$$\frac{\partial^2 f}{\partial x^2} \Big|_{i}^{(n)} = \frac{f_{i+1}^{(n)} - 2.f_i^{(n)} + f_{i-1}^{(n)}}{\Delta x^2}$$

•
$$\frac{f_i^{(n+1)} - f_i^{(n)}}{\Delta t} = \alpha \cdot \frac{f_{i+1}^{(n)} - 2 \cdot f_i^{(n)} + f_{i-1}^{(n)}}{\Delta x^2}$$

•
$$f_i^{(n+1)} = f_i^{(n)} + \frac{\alpha \Delta t}{\Delta x^2} \left(f_{i+1}^{(n)} - 2.f_i^{(n)} + f_{i-1}^{(n)} \right)$$

- We need to check for the consistency, stability, order etc.
- We can define diffusion number as $d = \frac{\alpha \Delta t}{\Delta x^2}$. $\therefore f_i^{(n+1)} = f_i^{(n)} + d \cdot \left(f_{i+1}^{(n)} - 2 \cdot f_i^{(n)} + f_{i-1}^{(n)} \right)$
- Explicit FTCS method needs to be checked for stability.

$$f_i^{(n+1)} = G.f_i^{(n)}; \quad G \implies \text{Amplification factor}$$

 $|G| \le 1.0 \text{ for stability.}$

- Backward Time Centered Space (BTCS):
- The BTCS formulation takes into account infinite propagation speed.

$$\frac{\partial f}{\partial t} = \alpha \frac{\partial^2 f}{\partial x^2}$$

$$\frac{\partial f}{\partial t}\Big|_{i}^{(n+1)} = \frac{f_{i}^{(n+1)} - f_{i}^{(n)}}{\Delta t}$$

$$\frac{\partial^2 f}{\partial x^2}\Big|_{i}^{(n+1)} = \frac{f_{i+1}^{(n+1)} - 2 \cdot f_{i}^{(n+1)} + f_{i-1}^{(n+1)}}{\Delta x^2}$$

$$\therefore \frac{f_{i}^{(n+1)} - f_{i}^{(n)}}{\Delta t} = \alpha \cdot \frac{f_{i+1}^{(n+1)} - 2 \cdot f_{i}^{(n+1)} + f_{i-1}^{(n+1)}}{\Delta x^2}$$

$$\Rightarrow f_{i}^{(n)} = -\frac{\alpha \Delta t}{\Delta x^2} f_{i-1}^{(n+1)} + \left(1 + \frac{2 \cdot \alpha \Delta t}{\Delta x^2}\right) f_{i}^{(n+1)} - \frac{\alpha \Delta t}{\Delta x^2} f_{i+1}^{(n+1)}$$

- Crank-Nicholson Method
- To solve the diffusion equation:

$$\frac{\partial f}{\partial t} = \alpha \frac{\partial^2 f}{\partial x^2}$$

- The temporal and spatial domains are discretized with intervals Δt and Δx respectively.
- Now,

If we try to evaluate

$$\left. \frac{\partial f}{\partial t} \right|_{i}^{(n+1/2)} = \alpha \cdot \frac{\partial^{2} f}{\partial x^{2}} \bigg|_{i}^{(n+1/2)}$$

- How will we evaluate $\frac{\partial f}{\partial t}\Big|_{i}^{(n+1/2)}$ and $\frac{\partial^2 f}{\partial x^2}\Big|_{i}^{(n+1/2)}$?
- From our earlier discussion, we can easily write $\partial f \Big|_{i}^{(n+1/2)} = f_{i}^{(n+1)} f_{i}^{(n)}$

write
$$\frac{\partial f}{\partial t}\Big|_{i}^{(n+1/2)} = \frac{f_{i}^{(n+1)} - f_{i}^{(n)}}{\Delta t}; \quad O(\Delta t^{2})$$

Now, we can also write

$$\frac{\partial^2 f}{\partial x^2} \Big|_{i}^{(n+1/2)} = \frac{1}{2} \left\{ \frac{\partial^2 f}{\partial x^2} \Big|_{i}^{(n)} + \frac{\partial^2 f}{\partial x^2} \Big|_{i}^{(n+1)} \right\}$$

$$= \frac{1}{2} \left\{ \frac{f_{i-1}^{(n)} - 2.f_{i}^{(n)} + f_{i+1}^{(n)}}{\Delta x^2} + \frac{f_{i-1}^{(n+1)} - 2.f_{i}^{(n+1)} + f_{i+1}^{(n+1)}}{\Delta x^2} \right\}; O(\Delta x^2)$$
i.e.
$$\frac{f_{i}^{(n+1)} - f_{i}^{(n)}}{\Delta t} = \frac{\alpha}{2} \left\{ \frac{f_{i-1}^{(n)} - 2.f_{i}^{(n)} + f_{i+1}^{(n)}}{\Delta x^2} + \frac{f_{i-1}^{(n+1)} - 2.f_{i}^{(n+1)} + f_{i+1}^{(n+1)}}{\Delta x^2} \right\}$$

As we know diffusion number, $d = \frac{\alpha \Delta t}{\Delta x^2}$.

$$\therefore \left[\left(-\frac{d}{2} \right) f_{i-1}^{(n+1)} + \left(1 + d \right) f_i^{(n+1)} + \left(-\frac{d}{2} \right) f_{i+1}^{(n+1)} = \left(\frac{d}{2} \right) f_{i-1}^{(n)} + \left(1 - d \right) f_i^{(n)} + \left(\frac{d}{2} \right) f_{i+1}^{(n)}$$