CE 601: Numerical Methods
Lecture 14

Polynomial Approximations (contd..)

Course Coordinator: Dr. Suresh A. Kartha, Associate Professor, Department of Civil Engineering, IIT Guwahati.

Polynomial Approximations

- Polynomials can be used (and are most popular) as approximating functions to a given data set.
- There are
 - \rightarrow Exactly-fit polynomials

 \rightarrow Approximately fitting polynomials

- In the exactly-fit polynomials, based on the desired number of points we consider, exactly-fit polynomials can be developed.
- For a total of (n+1) data points, one can develop exactly fit P₁(x), P₂(x), ..., P_n(x) polynomials.
- However for a given (n+1) data, the polynomial $P_n(x)$ will always be unique.

Direct-Fit Polynomials

- In the given (n+1) data set (x_0, f_0) , (x_1, f_1) ,..., (x_n, f_n) .
- As discussed there can be only one unique nth degree polynomial.

$$P_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

Substitute the polynmial at each data point.

$$f_{0} = a_{0} + a_{1}x_{0} + a_{2}x_{0}^{2} + \dots + a_{n}x_{0}^{n}$$

$$f_{1} = a_{0} + a_{1}x_{1} + a_{2}x_{1}^{2} + \dots + a_{n}x_{1}^{n}$$

$$\vdots$$

$$f_{n} = a_{0} + a_{1}x_{n} + a_{2}x_{n}^{2} + \dots + a_{n}x_{n}^{n}$$

- You will get (n+1) equations with (n+1) unknowns a₀, a₁, a₂, ...
 , a_n
- This forms a system of linear equations. You solve for a₀, a₁, a₂, ..., a_n and you will get the nth degree polynomial.

<u>Example</u>

X	f		
3.35	0.298509		
3.40	0.294118		
3.50	0.285714		
3.60	0.277778		

- Let us fit a polynomial approximation to relate 'f' with 'x'.
- The unique polynomial can be say, $P_3(x) = a_0 + a_1 x$ $+ a_2 x^2 + a_3 x^3$.

Now, $f_0 = 0.298509 = a_0 + 3.35a_1 + (3.35)^2 a_2 + (3.35)^3 a_3$ $f_1 = 0.294118 = a_0 + 3.40a_1 + (3.40)^2 a_2 + (3.40)^3 a_3$ $f_2 = 0.285714 = a_0 + 3.50a_1 + (3.50)^2 a_2 + (3.50)^3 a_3$ $f_3 = 0.277778 = a_0 + 3.60a_1 + (3.60)^2 a_2 + (3.60)^3 a_3$ You are getting a system of linear equations,

(1	3.35	11.2225	37.5954	$\left[a_{0}\right]$		(0.298509)
1	3.40	11.5600	39.3040	$ a_1 $		0.294118
1	3.50	12.2500	42.8750	a_2	> = <	0.285714
1	3.60	12.9600	46.6560	$\begin{bmatrix} a_3 \end{bmatrix}$		0.277778

- Solving this, you will get a unique polynomial.
- You can then subsequently use it for:
 - Interpolation
 - Differentiation
 - Integration

Lagrange Polynomials

- The direct fit polynomial tries to solve a system of linear equations. The number of operations involved may be huge and computationally intensive. It may also be time consuming.
- There are other ways to determine the polynomials that pass through all the desired points.
- One such procedure is Lagrange's polynomials.
- If there are two data points set (x_0, f_0) and (x_1, f_1) , then we can fit the unique first degree polynomial $P_1(x)$.

$$P_1(x) = \frac{(x - x_1)}{(x_0 - x_1)} f_0 + \frac{(x - x_0)}{(x_1 - x_0)} f_1$$

If three data points: $(x_0, f_0), (x_1, f_1)$ and (x_2, f_2) , then:

$$P_{2}(x) = \frac{(x - x_{1})(x - x_{2})}{(x_{0} - x_{1})(x_{0} - x_{2})} f_{0} + \frac{(x - x_{0})(x - x_{2})}{(x_{1} - x_{0})(x_{1} - x_{2})} f_{1}$$
$$+ \frac{(x - x_{0})(x - x_{1})}{(x_{2} - x_{0})(x_{2} - x_{1})} f_{2}$$

An n^{th} degree Lagrange polynomial will be:

$$P_{n}(x) = \frac{(x - x_{1})(x - x_{2})\cdots(x - x_{n})}{(x_{0} - x_{1})(x_{0} - x_{2})\cdots(x_{0} - x_{n})} f_{0}$$

$$+ \frac{(x - x_{0})(x - x_{2})\cdots(x - x_{n})}{(x_{1} - x_{0})(x_{1} - x_{2})\cdots(x_{1} - x_{n})} f_{1}$$

$$\vdots$$

$$+ \frac{(x - x_{0})(x - x_{1})\cdots(x - x_{n-1})}{(x_{n} - x_{0})(x_{n} - x_{1})\cdots(x_{n} - x_{n-1})} f_{n}$$

 Lagrange polynomials can be used for equally spaced and unequally spaced data.

Example (same example)

Say if you want to develop a P₂(x) that passes through (x₀, f₀), (x₁, f₁) and (x₂, f₂).

$$P_{2}(x) = \frac{(x-3.40)(x-3.50)}{(3.35-3.40)(3.35-3.50)} \times 0.298509 + \frac{(x-3.35)(x-3.50)}{(3.40-3.35)(3.40-3.50)} \times 0.294118$$
$$+ \frac{(x-3.35)(x-3.40)}{(3.50-3.35)(3.50-3.40)} \times 0.285714$$

- Similarly P₃(x) can be developed and it will be unique.
- Note:
- 1) The direct-fit polynomials are useful mostly when data are uniformly spaced.
- 2) In Lagrange method, we need to reevaluate the entire calculations again if we need to change the polynomial. (i.e. from $P_2(x)$ to $P_3(x)$).

Divided Difference Polynomials

• Divided difference

-> ratio of difference in the function values at two points and the difference in the corresponding independent variables.

• Consider the (n+1) data points (x_i, f_i) .

X _i	f_i
x _o	f_o
X 1	f_1
x ₂	f_2
:	:
x _n	f _n

- We can evaluate divided difference for any data point.
- First Divided Difference

At any data point 'i'

$$f[x_i, x_{i+1}] = \frac{f_{i+1} - f_i}{x_{i+1} - x_i}$$

∴ First divided difference at $i = 0, f[x_0, x_1] = \frac{f_1 - f_0}{x_1 - x_0}$

The second divided difference at any data no. 'i',

$$f[x_{i}, x_{i+1}, x_{i+2}] = \frac{f[x_{i+1}, x_{i+2}] - f[x_{i}, x_{i+1}]}{x_{i+2} - x_{i}}$$
$$= \frac{\frac{(f_{i+2} - f_{i+1})}{(x_{i+2} - x_{i+1})} - \frac{(f_{i+1} - f_{i})}{(x_{i+1} - x_{i})}}{x_{i+2} - x_{i}}$$

• We can define third divided diference and so on.

• The n^{th} divided difference for data point i = 0, $f[x, x, \dots, x] = f[x, x, \dots, x]$

$$f[x_0, x_1, x_2, \dots, x_n] = \frac{f[x_1, x_2, \dots, x_n] - f[x_0, x_1, \dots, x_{n-1}]}{x_n - x_0}$$

Rather than writing $f[x_0, x_1]$ or $f[x_i, x_{i+1}]$, symbolically we will write as $f_0^{(1)}, f_i^{(1)}$.

$$f[x_i, x_{i+1}, x_{i+2}] \rightarrow f_i^{(2)}$$

$$f[x_i, x_{i+1}, \cdots, x_{i+n}] \rightarrow f_i^{(n)} \text{ in the general form.}$$

• The Divided difference table will be:

• You can easily evaluate divided differences for any data.

- Q. What is the purpose of divided difference ?
- Divided differences are used to develop polynomials.
- A nth degree divided difference polynomial for (n+1) data.

$$P_n(x) = f_i + (x - x_0)f_i^{(1)} + (x - x_0)(x - x_1)f_i^{(2)}$$

$$+\cdots+(x-x_0)(x-x_1)\cdots(x-x_{n-1})f_i^{(n)}$$

- This is actually defining a power series for $P_n(x)$ with its coefficient being the divided differences $f_i^{(n)}$.
- This *nth* degree polynomial will definitely pass through (x_i, f_i).

Example

 For the above example table of divided difference, we can develop a unique 5th degree polynomial with the beginning data point *i=0*.

$$P_{5}(x) = f_{0} + (t - t_{0})f_{i}^{(1)} + (t - t_{0})(t - t_{1})f_{0}^{(2)}$$

+ $(t - t_{0})(t - t_{1})(t - t_{2})f_{0}^{(3)} + (t - t_{0})(t - t_{1})(t - t_{2})(t - t_{3})f_{0}^{(4)}$
+ $(t - t_{0})(t - t_{1})(t - t_{2})(t - t_{3})(t - t_{4})f_{0}^{(5)}$
= $0.00 + 5t + t(t - 10) \times 0.25 + 0.0 + 0.0$

Difference Polynomials

 Rather than going for divided differences, we can simply tabulate the differences in function values and correspondingly develop difference polynomials

x;	8 .			
×.	f.	(+-+)	3	
х,	8,	(2.2)	$(g_{z} - 2g_{z} + g_{z})$	(g - 3g + 3g, -g)
x,	8.		(g 2g. + g.)	
×3	f,	$(\vartheta_3 - \vartheta_2)$		
:	•	15 😥		
	:			
x,	£.,			

- You can form such difference tables. Based on the reference point, the type of differences are named.
 - Forward difference $\Delta f_i = f_{i+1} f_i$
 - Backward difference $\nabla f_{i+1} = f_{i+1} f_i$
 - Centered difference $\delta f_{i+1/2} = f_{i+1} f_i$
- So you can have forward, backward or centered difference table.
- In a given (n+1) data points available, you can only fit one unique nth degree polynomial P_n(x), irrespective of the methods (the polynomial has to pass through all points).
- For a given (n+1) data points available, you can only fit one unique nth methods (the polynomial has to pass through all points).