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Numerical Differentiation

We already discussed that if polynomials are used as approximating

functions for the actual functions, then these polynomials can be mostly 

used to find the derivatives of the
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We have also seen that
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To obtain now various difference difference formulas
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These equations for '( ) and "( ) are one-sided

forward difference forms to approxi
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For ( ) for the polynomial ( ) approximating ( ),
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At ,  i.e. 0,  we have:
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That is we are having error of the order ( ). Now as 0,
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These are one-sided forward difference formulas, we need to

expand them to get difference formulas.
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If the base point is  and if we evaluate the

derivatives at .
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These are centered difference forms for first and second 
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using Newton's polynomials.
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• Elaboration of the difference formula

• From the one-sided forward difference formula:
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In a similar note:

 The second derivative
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 The centered difference formulas for these derivatives
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