CE 601: Numerical Methods Lecture 19

Numerical Differentiation

Course Coordinator: Dr. Suresh A. Kartha, Associate Professor, Department of Civil Engineering, IIT Guwahati.

Numerical Differentiation

 \rightarrow We already discussed that if polynomials are used as approximating functions for the actual functions, then these polynomials can be mostly used to find the <u>derivatives</u> of the actual function.

i.e. if $f(x) \approx P_n(x)$ then $f'(x) \approx P_n'(x)$

 \rightarrow While using Newton's forward difference polynomial, we have seen that error

$$E(x) = \frac{s(s-1)(s-2)\cdots(s-n)}{(n+1)!} \Delta x^{n+1} f^{(n+1)}(\zeta)$$

where $x_0 \leq \zeta \leq x_n$.

This means $P_n(x)$ has an error of $O(\Delta x^{n+1})$

 \rightarrow We have also seen that

$$f'(x) \approx P_n'(x) = \frac{1}{\Delta x} \left[\Delta f_0 + \frac{2s-1}{2} \Delta^2 f_0 + \frac{3s^2 - 6s + 2}{6} \Delta^3 f_0 + \cdots \right] \text{ and}$$
$$f''(x) \approx P_n''(x) = \frac{1}{(\Delta x)^2} \left[\Delta^2 f_0 + (s-1) \Delta^3 f_0 + \frac{6s^2 - 18s + 11}{12} \Delta^4 f_0 + \cdots \right]$$

 \rightarrow To obtain now various difference difference formulas Now keep the base point as x_0 .

... Newton's forward difference polynomial:

$$P_n(x) = f_0 + s\Delta f_0 + \frac{s(s-1)}{2}\Delta^2 f_0 + \frac{s(s-1)(s-2)}{6}\Delta^3 f_0$$

+ \dots + \frac{s(s-1)(s-2)\dots (s-(n-1))}{n!} \Delta^n f_0, \text{ where } s = \frac{x-x_0}{\Delta x}.

Here at
$$x = x_0$$
 i.e. $s = 0$,
i.e. $P_n(x_0) = f_0$
$$\boxed{P_n'(x_0) = \frac{1}{\Delta x} \left[\Delta f_0 - \frac{1}{2} \Delta^2 f_0 + \frac{1}{3} \Delta^3 f_0 + \cdots \right]} P_n''(x_0) = \frac{1}{\Delta x^2} \left[\Delta^2 f_0 - \Delta^3 f_0 + \frac{11}{12} \Delta^4 f_0 + \cdots \right]}$$

→ These equations for $P_n'(x_0)$ and $P_n''(x_0)$ are one-sided forward difference forms to approximate derivatives. → For E(x) for the polynomial $P_n(x)$ approximating f(x), $P_n'(x)$ will be having error

$$\frac{d}{dx} \underbrace{ \underbrace{ \Phi}(x) }_{(x)} \underbrace{ \frac{d}{dx} \left[\frac{s(s-1)(s-2)\cdots(s-n)}{(n+1)!} (\Delta x)^{n+1} f^{(n+1)}(\zeta) \right] \frac{ds}{dx} }_{(n+1)!} \\ = \frac{(\Delta x)^n f^{(n+1)}(\zeta)}{(n+1)!} \frac{d}{dx} \begin{bmatrix} (s-1)(s-2)\cdots(s-n) + s(s-2)\cdots(s-n) \\ +\cdots + s(s-1)(s-2)\cdots(s-(n-1)) \end{bmatrix} \end{bmatrix}}_{(n+1)!}$$

At $x = x_0$, i.e. s = 0, we have: $\frac{d}{dx} E(x_0) = \frac{(-1)^n}{(n+1)!} (\Delta x)^n n! f^{(n+1)}(\zeta) = \frac{(-1)^n}{n+1} (\Delta x)^n f^{(n+1)}(\zeta)$ That is we are having error of the order (Δx^n) . Now as $\Delta x \rightarrow 0$, $P_n(x_0) \rightarrow O(\Delta x^{n+1})$ $P_n'(x_0) \rightarrow O(\Delta x^n)$; (e.g. $P_1'(x_0) \rightarrow O(\Delta x^1)$; $P_2'(x_0) \rightarrow O(\Delta x^2)$) Similarly, $P_n''(x_0) \rightarrow O(\Delta x^{n-1})$; (e.g. $P_2''(x_0) \rightarrow O(\Delta x)$; $P_2''(x_0) \rightarrow O(\Delta x^2)$...) \rightarrow These are one-sided forward difference formulas, we need to expand them to get difference formulas.

If the base point is x_0 and if we evaluate the derivatives at $x = x_1$. Then s=1,

$$P_{n}'(x_{1}) = \frac{1}{\Delta x} \left[\Delta f_{0} + \frac{1}{2} \Delta^{2} f_{0} - \frac{1}{6} \Delta^{3} f_{0} + \cdots \right]$$
$$P_{n}''(x_{1}) = \frac{1}{\Delta x^{2}} \left[\Delta^{2} f_{0} - \frac{1}{12} \Delta^{4} f_{0} + \cdots \right]$$

These are centered difference forms for first and second derivatives using Newton's polynomials.

You can see, $P_1'(x_1) \rightarrow O(\Delta x)$ $P_2'(x_1) \rightarrow O(\Delta x^2)$

 $I_2(x_1) \neq O(\Delta x)$

Now see that $P_2''(x_1) \rightarrow O(\Delta x^2)$.

- <u>Elaboration of the difference formula</u>
- From the one-sided forward difference formula:

$$P_{n}'(x_{0}) = \frac{1}{\Delta x} \left[\Delta f_{0} - \frac{1}{2} \Delta^{2} f_{0} + \frac{1}{3} \Delta^{3} f_{0} - \cdots \right]$$

For
$$n = 1$$
, $P_1'(x_0) = \frac{\Delta f_0}{\Delta x} \longrightarrow O(\Delta x)$

x	f	Δf	$\Delta^2 f$	$\Delta^3 f$
x_0	$f_{ heta}$			
		$f_1 - f_0$		
<i>x</i> ₁	f_1		$f_2 - 2f_1 + f_0$	
		$f_2 - f_1$		f_3 - $3f_2$ + $3f_1$ - f_0
x_2	f_2		$f_3 - 2f_2 + f_1$:
		$f_3 - f_2$:	$f_n - 3f_{n-1} + 3f_{n-2} - f_{n-3}$
:	:	:	$f_n - 2f_{n-1} - f_{n-2}$	
		$f_n - f_{n-1}$		
x_n	f_n			

i.e.
$$P_1'(x_0) = \frac{f_1 - f_0}{\Delta x} \to O(\Delta x)$$

Similarly,

$$P_{2}'(x_{0}) = \frac{1}{\Delta x} \left[\Delta f_{0} - \frac{1}{2} \Delta^{2} f_{0} \right] + O(\Delta x^{2})$$

$$= \frac{2\Delta f_{0} - \Delta^{2} f_{0}}{2\Delta x} + O(\Delta x^{2})$$

$$= \frac{2}{2} \frac{f_{1} - f_{0}}{f_{0}} - \frac{f_{0} - 2f_{0} + f_{0}}{2\Delta x} + O(\Delta x^{2})$$

$$\frac{\left| \frac{df}{dx} \right|_{x=x_{0}}}{2\Delta x} \cong P_{2}'(x_{0}) = \frac{f_{2} + 4f_{1} - 3f_{0}}{2\Delta x} \to O(\Delta x^{2})$$

This is second degree approximation for the first derivative with order of approximation $O(\Delta x^2)$.

In a similar note:

 \Rightarrow The second derivative

$$P_{n}''(x_{0}) = \frac{1}{\Delta x^{2}} \Big[\Delta^{2} f_{0} - \Delta^{3} f_{0} + \cdots \Big]$$

For $P_{2}''(x_{0}) = \frac{1}{\Delta x^{2}} \Big[\Delta^{2} f_{0} \Big] + O(\Delta x)$
i.e. $P_{2}''(x_{0}) = \frac{f_{2} - 2f_{1} + f_{0}}{\Delta x^{2}} \rightarrow O(\Delta x)$

$$P_{3}''(x_{0}) = \frac{1}{\Delta x^{2}} \Big[\Delta^{2} f - \Delta^{3} f \Big] \rightarrow O(\Delta x^{2})$$

$$= \frac{(f_{2} - 2f_{1} + f_{0}) - (f_{3} - 3f_{2} + 3f_{1} - f_{0})}{\Delta x^{2}} \rightarrow O(\Delta x^{2})$$

i.e. $P_{3}''(x_{0}) = \frac{-f_{3} + 4f_{2} - 5f_{1} + 2f_{0}}{\Delta x^{2}} \rightarrow O(\Delta x^{2})$

 \Rightarrow The centered difference formulas for these derivatives

$$P_n'(x) = \frac{1}{\Delta x} \left[\Delta f_0 + \frac{1}{2} \Delta^2 f_0 - \frac{1}{6} \Delta^3 f_0 + \frac{1}{12} \Delta^4 f_0 + \cdots \right]$$

 \rightarrow To get the first degree, first order approx.

$$P_1'(x_1) = \frac{1}{\Delta x} \Delta f_0 \rightarrow O(\Delta x)$$

The method will not work.

 \rightarrow To get the second degree, second order approx.

$$\therefore P_2'(x_1) = \frac{1}{\Delta x} \left[\Delta f_0 + \frac{1}{2} \Delta^2 f_0 \right] \rightarrow O(\Delta x^2)$$

$$= \frac{1}{2\Delta x} \left[2\Delta f_0 + \Delta^2 f_0 \right] \rightarrow O(\Delta x^2) = \frac{2(f_1 - f_0) + (f_2 - 2f_1 + f_0)}{2\Delta x} \rightarrow O(\Delta x^2)$$
or,
$$\left. \frac{df}{dx} \right|_{x=x_1} \cong P_2'(x_1) = \frac{f_2 - f_0}{2\Delta x} \rightarrow O(\Delta x^2)$$

Similarly the second derivative:
$$P_n''(x_1) = \frac{1}{\Delta x^2} \left[\Delta^2 f_0 - \frac{1}{12} \Delta^4 f_0 + \cdots \right]$$

i.e.
$$P_2''(x_1) = \frac{1}{\Delta x^2} \Big[\Delta^2 f_0 \Big] \rightarrow O(\Delta x^2)$$
$$\boxed{P_2''(x_1) = \frac{f_2 - 2f_1 + f_0}{\Delta x^2} \rightarrow O(\Delta x^2)}$$