CE 601: Numerical Methods Lecture 11

Secant Method and Muller's Method

Course Coordinator: Dr. Suresh A. Kartha, Associate Professor, Department of Civil Engineering, IIT Guwahati. <u>Convergence criteria in N-R method</u>

$$\circ e_{i+1} = x_{i+1} - \alpha$$

As $x_{i+1} = x_i - f(x_i) / f'(x_i) = g(x_i)$ (say)

- For convergence we now require |g'(ζ)|< 1
 g(x) = x f(x)/f'(x)
 So, q'(x) = f(x) f''(x)/(f'(x))²
- At exact convergence i.e. at $x = \alpha$, we have

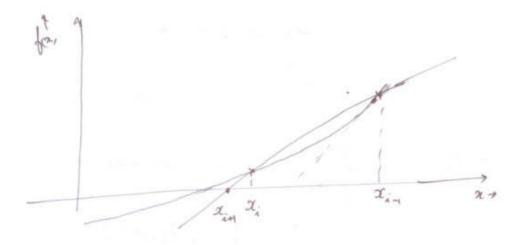
$$x_{i+1} = x_i - f(x_i) / f'(x_i)$$
$$\Rightarrow x_{i+1} - \alpha = x_i - \alpha - f(x_i) / f'(x_i)$$
$$\Rightarrow e_{i+1} = e_i - f(x_i) / f'(x_i)$$

○ Again using Taylor's series expression for $f(\alpha)$ w.r.t. x_i . $f(\alpha) = f(x_i) + f'(x_i)(\alpha - x_i) + (\frac{1}{2}) f''(\zeta) (\alpha - x_i)^2 = 0, x_i \le \zeta \le \alpha$ i.e. $f(x_i) = e_i f'(x_i) - (\frac{1}{2}) f''(\zeta) e_i^2$ So, $e_{i+1} = e_i - f(x_i)/f'(x_i)$ becomes $\Rightarrow e_{i+1} = e_i - (e_i f'(x_i) - (\frac{1}{2}) f''(\zeta) e_i^2)/f'(x_i)$ $\Rightarrow e_{i+1} = (\frac{1}{2}) f''(\zeta) e_i^2/f'(x_i)$

- You can see that error reduces quadratically at every iteration. Therefore it is faster.
- Q. What happens if f'(x) = 0 while using N-R method?
- Then, Newton-Raphson method will not be suitable to obtain solutions.
- In that case, we need to go for another method called <u>Secant Method</u>.

<u>Secant method</u>

• Instead of a tangential line, we will be drawing a secant line passing trough $(x_i, f(x_i))$.



• Here $x_{i+1} = x_i - f(x_i)/g'(x_i)$. $g'(x_i) \rightarrow \text{slope of the secant line.}$ Now $g'(x_i) \neq f'(x_i)$ $g'(x_i) = (g(x_i) - g(x_{i-1}))/(x_i - x_{i-1}) = (f(x_i) - f(x_{i-1}))/(x_i - x_{i-1})$ $g'(x_{i+1}) = (g(x_{i+1}) - g(x_i))/(x_{i+1} - x_i) = -f(x_i)/(x_{i+1} - x_i)$ Equating $(f(x_i) - f(x_{i-1}))/(x_i - x_{i-1}) = -f(x_i)/(x_{i+1} - x_i)$ Or, $x_{i+1} = x_i - f(x_i)(x_i - x_{i-1})/(f(x_i) - f(x_{i-1}))$ In the secant method, the improved value of x will be

$$x_{i+1} = x_i - f(x_i) (x_i - x_{i-1}) / (f(x_i) - f(x_{i-1}))$$

- Recall this particular expression
 - \rightarrow Compare with Regula-Falasi method
 - \rightarrow Identify what are the differences?

 \rightarrow The students are requested to work out the examples on this topic

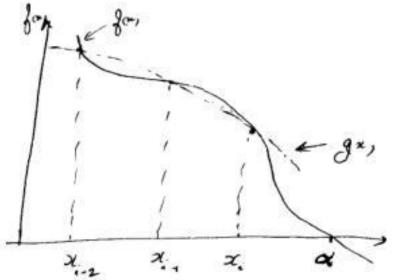
• <u>Muller's method</u>

→ In Newton's method and Secant method we approximated the non-linear function $f(x) \approx g(x)$ a straight line. A straight line is a first degree equation.

 \rightarrow On a similar note we can approximate $f(x) \approx g(x)$, where g(x) will be quadratic.

 \rightarrow To form a quadratic function, you require at least three known points.

 \rightarrow At any (i+1)th iteration you need to utilize $x_{i-1}, x_{i-2},$ and x_i .



- \rightarrow Here $f(x) \approx g(x) = a (x x_i)^2 + b(x x_i) + c$
- →The known points are: $(x_i, f(x_i))$, $(x_{i-1}, f(x_{i-1}))$ and $(x_{i-2}, f(x_{i-2}))$. Also these three points the quadratic function g(x) also passes

i.e.
$$g(x_i) = a \ X \ 0 + b \ X \ 0 + c = c = f(x_i)$$

 $g(x_{i-1}) = a \ (x_{i-1} - x_i)^2 + b \ (x_{i-1} - x_i) + c = f(x_{i-1})$
 $g(x_{i-2}) = a \ (x_{i-2} - x_i)^2 + b \ (x_{i-2} - x_i) + c = f(x_{i-2})$
From these three relationships, we get $c = f(x_i)$.
Again symbolical term $\Delta x_1^{(i)} = x_{i-1} - x_i, \ \Delta x_2^{(i)} = x_{i-2} - x_i, \ \delta f_1^{(i)} = f(x_{i-1}) - f(x_i), \ \delta f_2^{(i)} = f(x_{i-2}) - f(x_i),.$
i.e. $f(x_{i-1}) - f(x_i) = a \ (x_{i-1} - x_i)^2 + b \ (x_{i-1} - x_i)$
or, $\delta f_1^{(i)} = a \ (\Delta x_1^{(i)})^2 + b \ \Delta x_1^{(i)}.....(1)$
and $\delta f_2^{(i)} = a \ (\Delta x_2^{(i)})^2 + b \ \Delta x_2^{(i)} \dots (2)$

 \rightarrow Similarly we get,

$$a = (\delta f_1 \ \Delta x_2 \ - \ \delta f_2 \ \Delta x_1 \) / (\Delta x_1 \ \Delta x_2 \ (\Delta x_1 \ - \ \Delta x_2 \))$$

and $b = (\delta f_2 \ \Delta x_1^2 \ - \ \delta f_1 \ \Delta x_2^2 \) / (\Delta x_1 \ \Delta x_2 \ (\Delta x_1 \ - \ \Delta x_2 \))$
So, $g(x) = a \ (x - x_i)^2 + b(x - x_i) + c$
At x_{i+1} , we are expecting convergence.
i.e. $g(x_{i+1}) = 0 = a \ (x_{i+1} - x_i)^2 + b \ (x_{i+1} - x_i) + c$
i.e. $(x_{i+1} - x_i) \ [a \ (x_{i+1} - x_i) + b] = -c$
We have, $x_{i+1} - x_i = (-b \ \sqrt{(b^2 - 4ac)})/2a$
We can wait, $(-b \ \sqrt{(b^2 - 4ac)})/2a$
We can wait, $(-b \ \sqrt{(b^2 - 4ac)})/2a$
 $= (-b \ \sqrt{(b^2 - 4ac)}) \ (-b \ \sqrt{(b^2 - 4ac)})/2a \ (-b \ \sqrt{(b^2 - 4ac)})$
 $= -2c / (-b \ \sqrt{(b^2 - 4ac)})$
So. $x_{i+1} = x_i = -2c / (-b \ \sqrt{(b^2 - 4ac)})$
where $c = f(x_i)$, $a = (\delta f_1^{(i)} \ \Delta x_2^{(i)} - \delta f_2^{(i)} \ \Delta x_1^{(i)} \ \Delta x_2^{(i)} \ (\Delta x_1^{(i)} - \ \Delta x_2^{(i)}))$
 $and $b = (\delta f_2^{(i)} \ (\Delta x_1^{(i)})^2 - \delta f_1^{(i)} \ (\Delta x_2^{(i)})^2) / (\Delta x_1^{(i)} \ \Delta x_2^{(i)} \ (\Delta x_1^{(i)} - \ \Delta x_2^{(i)}))$
 \rightarrow Convergence criteria: $|x_{i+1} - x_i| \le \varepsilon$ or, $|f(x_{i+1})| \le \varepsilon$.$

- <u>Solutions of Polynomials</u>
- You have linear and non-linear polynomials

 $P_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$ is an nth degree polynomial.

→ For any nth degree polynomial, you can have n roots.
 → Roots may be real or complex.

 \rightarrow The roots can be single or multiple.

- → Using open domain methods like Newton, Secant, Muller etc we can find roots.
- \rightarrow Recall that Newton's method converge quadratic ally.

$$e_{i+1} = (\frac{1}{2}) f''(\zeta) e_i^2 / f'(\zeta))$$

→ Let we use Newton's method to find the roots of the polynomial.

- Example: $f(x) = x^3 3x^2 + 4x 2 = P_3(x)$
- $f(x) = f(x) = x^3 3x^2 + 4x 2$ and $f'(x) = P_3(x) = 3x^2 6x + 4$
- $x_{i+1} = x_i f(x_i) / f'(x_i)$
- Let us start with $x_0 = 2.0000$.

i	X _i	<i>f(x_i)</i>	f'(x _i)	Error
0	2.00000	2.00000	4.00000	2.00000
1	1.50000	0.62500	1.75000	0.62500
2	1.14286	0.14578	1.06123	0.14578
3	1.00549	0.00549	1.00009	0.00549
4	1.00000	0.00000		0.00000

• The solution is $\alpha = 1.0000$. This is our root. There are still two roots. How will we find them?

- Use <u>polynomial Deflation</u>.
- Any nth degree polynomial

$$P_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

say if it is having a root $x = \alpha$, then we can write

$$\begin{split} P_n(x) &= (x - \alpha) \ Q_{n-1}(x) \\ \text{where } Q_{n-1}(x) \text{ is an } (n-1)^{\text{th}} \text{ degree polynomial.} \\ Q_{n-1}(x) &= b_1 + b_2 x + b_3 x^2 + \dots + b_n \ x^{n-1} \\ \text{you can see that} \\ b_n &= a_n \\ b_i &= a_i + \alpha \ b_{i+1} \text{ ; } i = n-1 \text{, } n-2 \text{, } \dots \text{, } 1 \end{split}$$

So, in the given problem. $P_3(x) = x^3 - 3x^2 + 4x - 2$

i.e.
$$a_0 = -2$$
, $a_1 = 4$, $a_2 = -3$ and $a_3 = 1$.
 $\alpha = 1.00000$ is an root.
So, $P_3(x) = (x - 1.00000)Q_2(x)$
Where $Q_2(x) = b_1 + b_2x + b_3x^2$
Now, $b_3 = a_3 = 1.00000$
 $b_2 = a_2 + \alpha b_3 = -3 + 1.00 \times 1.00 = -2.00000$
 $b_1 = a_1 + \alpha b_2 = 4 + 1.00 \times -2.00 = 2.00000$
So, $Q_2(x) = 2 - 2x + x^2$

→ The second degree polynomial can be again subjected to Newton's method to obtain the solution.