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Elimination Methods

• For a system [A]{x} = {b} where [A] is an n X n matrix, 
the number of operations = (2/3)n3+(3/2)n2-(7/6)n.

• Note: The formula (2/3)n3+(3/2)n2-(7/6)n will always 
yield integer values.

• Like Gauss elimination, you might have studied Gauss-
Jordan elimination method. The objective of Gauss-
Jordan scheme was to convert [A]{x} = {b} => [I]{x} = 
{x}, [I] -> Identity matrix, through systematic 
elimination process.

• We are not going to discuss on this method in the 
class and request you to work on your our referring 
literature.



• The Gauss-Jordan scheme is computationally less 
efficient than the Gauss elimination scheme. The 
no. of operations involved in Gauss-Jordan 
scheme = n3+n2-n.  

• Like Gauss elimination, Gauss-Jordan, etc. you 
might have studied matrix inverse methods to 
solve linear systems

i.e.      [A]{x} = {b}

so,            {x} = [A]-1{b}

There are two evaluations in this scheme

→ First evaluate the inverse of matrix [A]

→Second, to evaluate the product of [A]-1{b}



• In both the evaluations, there are arithmetic 
operations involved. For matrix inverse it takes 
2n2-n operations i.e. total of 2n3 operations.

• Based on the significant digits assigned to the 
variables or components, round-off errors 
may creep in the solutions while using Gauss 
elimination scheme.

→ These errors can be minimized by 
performing  partial pivoting or scaled partial 
pivoting.



• LU Decomposition
o We have discussed that matrix can be factored i.e., it can 

be given as product of two different matrix. 
[A] = [B][C]

o There can be many possibilities of obtaining factor 
matrices.
→ However if we specify the diagonal elements of either 

[L] or [U], then we will have a unique a factorization for 
[A].

→The LU decomposition methods like Doolittle and Crout
work on these principles.

o In a similar tone, one can also factorize [A] as product of [L] 
and [U] i.e., [A]= [L][U] where [L] is lower triangular and [U] 
is a upper triangular matrix. 
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• Property of LU decomposition

o [A]{x} = {b}

[L][U] {x} = {b}

Multiply left and right side by [L]-1

[L]-1[L][U] {x} = [L]-1 {b} 

[I][U]{x} = [L]-1 {b} 

[U}{x} = [L]-1 {b}

o Let us define the system [U]{x} = {c}

So, we get {c} = [L]-1 {b}

or, [L]{c} = {b}          



o The meaning here is:

 Lower triangular matrix [L] will transform RHS vector 
{b} to {c} using the relation [L]-1{c} = {b}.

On obtaining {c} , using the relation [U]{x} = {c}, we 
obtain the solution vector.

 So if we can suitable algorithm such that process 
involved in LU decomposition are”

 Factorize [A] = [L][U]

 Forward substitution to evaluate {c}

 Backward substitution to evaluate {x]

 If the no. of arithmetic operations in factorization can 
be reduced then LU decomposition becomes 
efficient.



• The Advantage of LU Decomposition

o If there are many linear systems with same 
coefficient matrix i.e.,

[A]{x} = {b}

[A]{y} = {c}

[A]{z} = {d}

o Then if we adopt Gauss elimination, for each 
system it may take (2/3)n3+(3/2)n2-(7/6)n 
operations. The purpose may become tedious.

o If we do LU decomposition, then you may see that 
only once we need to decompose [A]=[L][U]

o After that for each system, we need to utilize only 
the forward and backward substitutions.



• Doolittle LU Decomposition

• [A] = [L][U]

• If we factorize in such a way that

i.e. diagonal elements of [L] are 1, then the 
approach is Doolittle’s method.

• If 

the approach is called Crout’s method.
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Algorithm for Doolittle’s LU Decomposition

• Doolittle algorithm is developed using 
knowledge of Gauss elimination.

• Recall Gauss elimination at any step k

• You can now write
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• This is nothing but 

• So you get
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• So the steps involved are:

o No. of steps as in Gauss elimination

k = 1,2,3,…,n-1

o At any k , i= k+1,k+2,…,n and j=k,k+1,…,n 
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o Forward substitution for c

o Back substitution for x
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Forward Substitution:

Now you can do back substitution easily.
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• Number of operations

• In Doolittle’s algorithm,

o to evaluate lik for any kth step for i> k, it takes 
(n-k) operations.

o To evaluate uij = aij
(k) it takes 2(n-k)2

operations.

o In (n-k) elimination steps to form [L] and [u], 
it takes,  1
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o To perform forward substitution,

as c1 = b1 (No operation required)

There are 2i operations for each i.

So, no. of operations = 

o To perform backward substitution, it requires 
n2 operations (as in Gauss)

o Total no. of operations =
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• No. of operations is same as Gauss elimination 
method.

• However if there are many systems involving 
[A], then you may need to just add the no. of 
operations for forward & backward 
substitution for each system.


