CE 601: Numerical Methods

Lecture 18

Multi-Variate Regression; Numerical Differentiation

Course Coordinator:
Dr. Suresh A. Kartha,
Associate Professor,
Department of Civil Engineering,
IIT Guwahati.

- We have already discussed on using method of least squares to fit polynomials (approximatelyfit polynomials) for the given data set
- This process of fitting is called <u>regression</u>.
- We can also do regression for multi-variate cases.

Say if
$$f = f(x, y)$$

We want to approximate the actual function f with a multi-variate polynomial Z.

i.e.
$$f \approx Z = f(x, y)$$

Then $Z = A + Bx + Cy$ (Linear regression)
 $\therefore e_i = f_i - Z_i$

Minimize sum of square of errors

i.e.
$$\sum e_i^2 = \sum_{i=0}^n (f_i - y_i)^2 = S$$

Criteria for minimisation: $\frac{\partial S}{\partial A} = 0, \frac{\partial S}{\partial B} = 0, \frac{\partial S}{\partial C} = 0.$

You will get the normal equations:

$$\begin{bmatrix} (n+1) & \sum x_i & \sum y_i \\ \sum x_i & \sum x_i^2 & \sum x_i y_i \\ \sum y_i & \sum x_i y_i & \sum y_i^2 \end{bmatrix} \begin{cases} A \\ B \\ C \end{cases} = \begin{cases} \sum f_i \\ \sum x_i f_i \\ \sum y_i f_i \end{cases}$$

- \rightarrow If you have higher degree multi-variate polynomial approximations, say, $Z = a_0 + a_1 x + b_1 y + a_2 x^2 + b_2 y^2 + c_2 xy$ There are 6 parameters: $a_0, a_1, b_1, a_2, b_2, c_2$
- → You require that many number of normal equations to find these parameters or coefficients.

Extension of Method of Least Squares to fit nonlinear curves that are not polynomials

- We have seen till now, this regressive technique to get polynomials for a given data set
 - → The polynomials may be linear or non-linear.
- Q. What happens if polynomial fitting is not suitable for certain types of data
- Soln. You may have to go for some other non-linear curve fitting.

Power equation $y = Ax^B$

Exponential equation $y = Ae^{Bx}$

To fit such non-linear equation, we can apply the method of least squares.

1) Power fit

For the data set (x_i, f_i) , if $f \approx y(x)$ is more appropriate where $y = ax^b$ (The power equation)

We will linearise this expression:

$$In(y) = In(a) + b In(x)$$

 $Y = A + B X$, where $Y = In(y)$, $A = In(a)$, $B = b$, $X = In(x)$.

Once, this form is made, the earlier description is used to find A and B and then $a = e^A$.

2) Exponential fit

If $f \approx y(x)$, where $y = a e^{bx}$,

then again, ln(y) = ln(a) + bx. Now linearise it and follow the same procedure as before.

3) Non-linear equation: Say if we want to fit,

 $y = \frac{A}{1 + Bx}$ or $y = \frac{A}{B + e^{Cx}}$ etc., then the above linearisation procedure will not work.

Define
$$e_i^2 = (f_i - y_i)^2$$
 and $S = \sum_{i=0}^n (f_i - y_i)^2 = \sum_{i=0}^n (f_i - \frac{A}{1 + Bx_i})^2$

or for the other function
$$S = \sum_{i=0}^{n} \left(f_i - \frac{A}{B + e^{Cx_i}} \right)^2$$

For minimum S, we want

$$\frac{\partial S}{\partial A} = 0$$
 and $\frac{\partial S}{\partial B} = 0$ and/or $\frac{\partial S}{\partial C} = 0$

i.e.
$$\frac{\partial S}{\partial A} = 0 = \sum_{i=0}^{n} 2 \left(f_i - \frac{A}{1 + Bx_i} \right) \left(\frac{-1}{1 + Bx_i} \right)$$

$$\frac{\partial S}{\partial B} = 0 = \sum_{i=0}^{n} 2 \left(f_i - \frac{A}{1 + Bx_i} \right) \left(\frac{-x_i A}{\left(1 + Bx_i \right)^2} \right)$$

This is a system of non-linear equations in *A* and *B*. We can use Newton's iteration method to solve such non-linear systems and find the coefficients *A* and *B*.

Numerical Differentiation

We need the exactly fit or approximately fit polynomials to interpolate function values for

a given data set (x_i, f_i) , i = 1, 2, 3, ..., n.

Say, $f(x) = P_k(x)$ (k^{th} degree polynomial)

$$\therefore f'(x) = P_k'(x); \text{ i.e. } \frac{d}{dx} (f(x)) = \frac{d}{dx} (P_k(x))$$

 $\therefore f'(x) = P_k'(x)$ (may not be true everytime).

Recall in the exactly fit polynomial. We used direct method.

$$f(x) \approx P_k(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_k x^k$$

$$f'(x) \approx P_k'(x) = a_1 + 2a_2x + \dots + ka_kx^{k-1}$$

• We can also use divided difference polynomials:

The divided differences
$$f_i^{(1)} = f[x_i, x_{i+1}] = \frac{f_{i+1} - f_i}{x_{i+1} - x_i}$$

You can apply this polynomial this polynomial for uniformly spaced data.

$$f(x) \approx P_n(x) = f_i^{(0)} + (x - x_0) f_i^{(1)} + (x - x_0) (x - x_1) f_i^{(2)}$$

$$+ \dots + (x - x_0) (x - x_1) \dots (x - x_{n-1}) f_i^{(n)}$$

$$+ \dots + (x - x_0) (x - x_1) \dots (x - x_{n-1}) f_i^{(n)}$$

$$\therefore f'(x) \approx P_n'(x) = f_i^{(1)} + (2x - (x_0 - x_1))f_i^{(2)} + \dots$$

Similarly, you can find $f''(x) \approx P_n''(x)$, etc.

For equally spaced data, we may use Newton's forward or backward difference polynomial to approximate a function.

×	f	4	±2°	139 139
χ,	Z.	<u> </u>		
\mathcal{L}_{i}	8,	12	Af	> 100 100
G.	8 ≥ 0	48.	4. J.	
x_3	T3	-		

$$\Delta f_i = f_{i+1} - f_i; \ \Delta^2 f_i = \Delta f_{i+1} - \Delta f$$

Recall Newton's forward difference polynomial

$$P_n(x) = f_0 + s\Delta f_0 + \frac{s(s-1)}{2}\Delta^2 f_0 + \frac{s(s-1)(s-2)}{6}\Delta^3 f_0$$

$$+\dots + \frac{s(s-1)(s-2)\dots(s-(n-1))}{n!}\Delta^n f_0, \text{ where } s = \frac{x-x_0}{\Delta x}.$$

The error in this n^{th} degree polynomial can be given as:

$$E(x) = \frac{s(s-1)(s-2)\cdots(s-n)}{(n+1)!} \Delta x^{n+1} f_0 + \frac{s(s-1)(s-2)\cdots(s-n-1)}{(n+2)!} \Delta x^{n+2} f_0 + \cdots$$

We can write when $\Delta x \rightarrow 0$,

$$\lim_{\Delta x \to 0} \frac{\Delta^2 y}{\Delta x^2} = \frac{d^2 y}{dx^2}; \quad \text{(i.e. } y^{(2)}\text{); } \therefore \Delta^2 y \approx \Delta x^2 y^{(2)}$$

In a similar sense:

$$E(x) = \frac{s(s-1)(s-2)\cdots(s-n)}{(n+1)!} (\Delta x)^{n+1} f^{(n+1)}(\zeta)$$

where
$$\Delta^{(n+1)} f \to (\Delta x)^{n+1} f^{(n+1)}(\zeta); \ x_0 \le \zeta \le x_n$$
.

 \therefore Actual function, $f(x) = P_n(x) + E(x)$

However we suggest $f(x) \approx P_n(x)$

$$\therefore f'(x) \approx \frac{d}{dx} (P_n(x))$$

From
$$s = \frac{x - x_0}{\Delta x}$$
, $\therefore \frac{ds}{dx} = \frac{1}{\Delta x}$ (Constant)

$$\therefore \frac{d}{dx} (P_n(x)) = \frac{d}{ds} (P_n(s)) \frac{ds}{dx} = \frac{1}{\Delta x} \frac{d}{ds} (P_n(s))$$

i.e.
$$P_n'(x) = \frac{1}{\Delta x} \left[\Delta f_0 + \frac{2s-1}{2} \Delta^2 f_0 + \frac{3s^2 - 6s + 2}{6} \Delta^3 f_0 + \cdots \right]$$

Similarly,
$$\frac{d}{dx}(E(x)) = \frac{1}{\Delta x} \frac{d}{ds}(E(s)).$$

Also
$$f''(x) \approx P_n''(x) = \frac{d}{dx} (P_n'(x)) = \frac{d}{ds} (P_n'(s)) \frac{ds}{dx}$$

$$= \frac{1}{(\Delta x)^2} \left[\Delta^2 f_0 + (s-1)\Delta^3 f_0 + \frac{6s^2 - 18s + 11}{12} \Delta^4 f_0 + \cdots \right]$$