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Initial Value ODE’s

• In the last class, we have introduced about 
Ordinary Differential Equations

• Classification of ODEs:

• Based on the conditions given to the application 
of an ODE, they can be classified as
– Initial value ODE

– Boundary value ODE

• The IV-ODE’s mostly describe propagation 
problems.

• The BV-ODE’s mostly describe equilibrium 
problems



• In Initial value ODE’s

 A general linear first-order ODE is 

 A general non-linear first-order ODE is 
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• To solve IV-ODE’s using Finite difference method:

• Objective of the finite difference method (FDM) is
to convert the ODE into algebraic form.

• The following steps are followed in FDM:

– Discretize the continuous domain (spatial or temporal)
to discrete finite-difference grid.

– Approximate the derivatives in ODE by finite
difference approximations.

– Substitute these approximations in ODEs at any
instant or location.

– Obtain algebraic equations.

– Solve the resulting algebraic equations or Finite
Difference Equations (FDE).



• We have seen on the last class, how the forward, 
backward and centered finite difference formulas can 
derive different finite-difference equations. 

• i.e. for the general non-linear first order IV-ODE:
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  (Explicit finite-difference eqn.)

   (Implicit finite-difference e
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• Care should be taken that the functions 
involved in FDM solutions are continuous and 
smooth.

• Else, it can give error or fluctuation.

• While using FDM, following errors can creep:

– Error in initial data

– Algebraic errors

– Truncation errors

– Round off errors

– Inherited errors

– Errors due to faulty formulations



First Order Euler Methods

1) The Explicit Euler Method

The explicit FDE is 

2)   The Implicit Euler Method
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Here the truncation error reduces at a speed ( ).
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The FDE is:
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• Comparison of explicit and implicit methods:

• It can be seen that the explicit method gives 
the solution directly.

• So, what is the need to go for implicit 
methods?

• Consider a homogeneous initial value ODE:

• We already know that the solution of this 
equation is 

• Using FDM, we will see how the solution 
appears.
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• Using explicit Euler method

• Hence
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• We have seen that the initial value of the 
function is                    at                  

• It can be seen that for            , the 
aforementioned expression for        has 
realistic values.

• For                       , it can be seen that the sign 
of the solution changes after each time step.
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• The solution would fluctuate around zero, but 
converges to zero at large values of    .t



• For             ,  the solution diverges and hence, 
we will not get stable solutions. 

• Using Implicit Euler method

• or,
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• It can be seen that even if , the solution
is available for the ODE.

• The implicit method happens to be
unconditionally stable.
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• Requirements for Finite Difference Methods:

• To successfully solve given ODEs, the FDMs 
should be: 

– Consistent

– Stable 

– Convergent



• What is meant by a FDM being consistent?

• It means that the difference between the 
finite difference algebraic equation and the 
original ODE vanishes when            .

• Consider the following Initial value ODE:

• Using explicit Euler method

0t 

0 0( );                  ( )
dy

y F t y t y
dt

  

1 nn ny y f t   



• Here,

• Since in this case

• So,
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• Considering      as base point, Taylor’s series is 
utilized to evaluate             

(2)

From the equations (1) and (2), we have
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• Dividing the previous equation by     , we have

•

• As           , we get

• So, the differential equation and FDE at            
are same. Hence, explicit Euler method is 
consistent. 
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