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Difference Polynomials
• Rather than going for divided differences, we 

can simply tabulate the differences in function 
values and correspondingly develop difference 
polynomials



• You can form such difference tables. Based on 
the reference point, the type of differences are 
named.
o Forward difference 

o Backward difference 

o Centered difference 

• So you can have forward, backward ot centered 
difference table.

• In a given (n+1) data points available, you can 
only fit one unique nth degree polynomial Pn(x), 
irrespective of the methods (the polynomial has 
to pass through all points). 
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• For a given (n+1) data points available, you 
can only fit one unique nth methods (the 
polynomial has to pass through all points).

• Newton Forward Difference Polynomial

• If the x value of a data set are uniformly 
spaced then let us define for the data set.
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• This variable is called 
interpolating variable. 
i.e. s is linear in ‘x’.
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Now the unique  degree polynomial can also be represented as,
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This is Newton's forward difference polynomial.
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various situation:

When s = 0, i.e. 0 .

Then ( )  same as the polynomial.

When s = 1, i.e. 1

( ) 0

In a similar note ( ) passes through all the (n

n

n

n

x x
x x

x

P x f

x x
x x x x

x

P x f f f f f f

P x


  






     



        

+1) data points given. 
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You can also represent this forward difference polynomial

using binomial coefficient representation
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ti fi ∆fi ∆2fi ∆3fi

10.00 50.00

90.00

20.00 140.00 80.00

170.00 -20.00

30.00 310.00 60.00

230.00

40.00 540.00

Example : For the earlier given data, develop Newton's forward difference

polynomial and interpolate ( 24 s).f t 
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We can start with various degrees of Newton's forward difference

polynomial to interpolate for ( 24 sec).

 Let us begin with first degree polynomial ( ) ( ). As our

interpolation is required at 2
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4 sec and also using forward

difference, let the base point 20.00 sec.

( ) 140.00 170.00 140 170 .

For 24 sec, (24 20) 10 0.4.

( 24) ( 0.4) 140.00 170.00 0.4 208 m.
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se a second degree polynomial ( ). Again

keep the base point at 20.0 sec.
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 The third degree polynomial will be unique for this case. 

Therefore, it should begin with base point 10.0 sec.
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Newton Backward Difference Polynomial

As explained for Newton's forward difference polynomials, we can

also use backward difference formulas to develop polynomials.

We can use backward differences

For a





0 0 1 1

1

th

 uniformly spaced data, if  is the base in an ( 1) data

( , ),( , ), ,( , ),

,  and define .

We have the unique  degree polynomial in the power series as:
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where  shows the  difference.
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The proof that this polynomial passes through all the data points

can be given as below,

Let 1; i.e. 1 .

( ) ( 1) ( 1) 0 .
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So it's matching.

 You may work out the examples in this topic.
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• We generally consider ‘x’ as the 
independent quantity and ‘f’ as the 
dependent quantity.

• Using polynomial approximations, we 
also performed interpolations f(x).

• For the same data, one can also 
perform inverse interpolations. i.e. the 
function value ‘f’ may be available and 
we can determine the corresponding ‘x’ 
value., i.e. x=f(x)
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Inverse Interpolation

• You can now use previously mentioned procedures to 
form polynomials

o Directly-fit polynomials
o Lagrange polynomials
o Newton’s polynomials, etc.
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• For a given data set



Multi-Variate Approximations

• We discussed till now in using polynomials as 
approximating functions for uni-variate
conditions i.e. f=f(x), etc.

• Again many scientific analysis may involve multi-
variate relationships i.e. Z=f(x,y), etc.

• To analyze such multi-variate problems, again we 
can use exact-fit polynomials.

• In the exact-fit procedure, two methods

o Successive univariate polynomials 
approximation

o Direct multi-variate polynomial approximation



Successive uni-variate polynomial 
approximation

• In some of your scientific or engineering 
problems you may come up with multi-variate
data. E.g.



• If such multi-variate data exist, then you may be 
interested to find a relation Z = f(x,y).

• Again using polynomial approximation we can 
do interpolation, differentiation, integration etc.

• The method here is

2

0 1 2

 Fit uni-variate polynomials ( ) ( , ) for each row

   i.e. 

   That is to find the respective coefficients for each line.
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 Now again a univariate polynomial can be obtained using

 the m-data points , , ,

   i.e. ( , )

 After forming the polynomial by finding coefficients , ,

we can interpolate for 
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• Example: The enthalpy of a gaseous system (H) 
measured in kJ/kg by varying pressure (kPa) and 
temperature (oC). The observations are recorded as 
such:

427 538 649

7929 3211 3489 3755

8274 3205 3487 3753

8618 3199 3482 3751

Temp oC

Pressure (kPa)

• You are now 
requested to 
evaluate enthalpy 
at T= 596 oC and 
P = 8446 kPa.
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Solution

There are three different values of  and three different values of .

Using successive univariate approximation:

(7929, )

(8274, )

(8618, )
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coefficient for each.

For (7929, )

    3211 = 427 (427)

    3489 = 538 (538)
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On solving you get, 2.029706 10 , 2.974433, 0.00048697.
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2.029706 10 2.974433 4.8697 10

Similarly,

(8274, ) 1.9710286 10 3.167113 6.49298 10

and

(8618, ) 1.979827 10 3.0978 5.681357 10

Using these three polynomials we will evaluat

H T T

H H T T T

H H T T T







     

     

     

1

2

3

e enthalpy H at temperature 596 .

We get, (7929,596) 3629.50 kJ/kg,

             (8274,596) 3628 kJ/kg,

             (8618,596) 3624 kJ/kg.
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f second degree is constructed 

as such: ( ,596)

where ,  and  coefficients are evaluated.

3629.50 7929 (7929)

3628 8274 (8274)

3624 8618 (8618)
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To interpolate, (8446,596) 3626.31 kJ/kg.
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