CE 601: Numerical Methods Lecture 15

Difference Polynomials, Inverse Interpolation, Multi-Variate Approx.

Course Coordinator: Dr. Suresh A. Kartha, Associate Professor, Department of Civil Engineering, IIT Guwahati.

Difference Polynomials

 Rather than going for divided differences, we can simply tabulate the differences in function values and correspondingly develop difference polynomials

x;	g .			
x.	f.	(+-+)		
х,	8,	(2.2)	(gz - 2g, + Zo)	$(2_3 - 3\beta_2 + 3\beta_1 - \beta_1)$
x,	or de la	(7, 0,)	(g 2g. + g.)	
×3	f,	$(\vartheta_3 - \vartheta_2)$		
2		15 😒		20
	:			
x,	£.,			

- You can form such difference tables. Based on the reference point, the type of differences are named.
 - Forward difference $\Delta f_i = f_{i+1} f_i$
 - Backward difference $\nabla f_{i+1} = f_{i+1} f_i$
 - \circ Centered difference $\delta f_{i+1/2} = f_{i+1} f_i$
- So you can have forward, backward ot centered difference table.
- In a given (n+1) data points available, you can only fit one unique nth degree polynomial P_n(x), irrespective of the methods (the polynomial has to pass through all points).

- For a given (n+1) data points available, you can only fit one unique nth methods (the polynomial has to pass through all points).
- Newton Forward Difference Polynomial
- If the x value of a data set are uniformly spaced then let us define for the data set.

X _i	f_i
x _o	f_o
X ₁	f_1
X ₂	f_2
:	:
x _n	f _n

$$s = \frac{x - x_0}{\Delta x}$$

This variable is called interpolating variable.
i.e. s is linear in 'x'.

Now the unique n^{th} degree polynomial can also be represented as,

$$P_n(x) = f_0 + s\Delta f_o + \frac{s(s-1)}{2!}\Delta^2 f_0 + \frac{s(s-1)(s-2)}{3!}\Delta^3 f_0$$

+...+ $\frac{s(s-1)(s-2)\cdots(s-(n-1))}{n!}\Delta^n f_0$

This is Newton's forward difference polynomial.

Let us see the various situation:

When
$$s = 0$$
, i.e. $0 = \frac{x - x_0}{\Delta x} \Rightarrow x = x_0$.
Then $P_n(x_0) = f_0$ same as the polynomial.
When $s = 1$, i.e. $1 = \frac{x - x_0}{\Delta x} \Rightarrow x = x_0 + \Delta x = x_1$
 $\therefore P_n(x_1) = f_0 + \Delta f_0 + 0 = f_0 + (f_1 - f_0) = f_1$

In a similar note $P_n(x)$ passes through all the (n+1) data points given.

You can also represent this forward difference polynomial using binomial coefficient representation

i.e.
$$\binom{s}{i} = \frac{s(s-1)(s-2)\cdots(s-(i-1))}{i!}$$

 $\therefore P_n(x) = f_0 + \binom{s}{1} \Delta f_0 + \binom{s}{2} \Delta^2 f_0 + \cdots$

Example : For the earlier given data, develop Newton's forward difference polynomial and interpolate f(t = 24 s).

t _i	f_i	Δf_i	$\Delta^2 f_i$	$\Delta^3 f_i$
10.00	50.00			
		90.00		
20.00	140.00		80.00	
		170.00		-20.00
30.00	310.00		60.00	
		230.00		
40.00	540.00			

We can start with various degrees of Newton's forward difference polynomial to interpolate for f(t = 24 sec).

• Let us begin with first degree polynomial $P_1(t) \approx f(t)$. As our interpolation is required at t = 24 sec and also using forward difference, let the base point $t_i = 20.00$ sec.

∴
$$P_1(t) = f_i + s\Delta f_i = 140.00 + s \times 170.00 = 140 + 170s$$
.
For $t = 24$ sec, $s = (24 - 20)/10 = 0.4$.

- : $P_1(t = 24) = P_1(s = 0.4) = 140.00 + 170.00 \times 0.4 = 208 \text{ m}.$
- Now let us use a second degree polynomial $P_2(t)$. Again keep the base point at t = 20.0 sec.

$$\begin{split} P_2(t) &= P_2(s) = f_i + s\Delta f_i + \frac{s(s-1)}{2!}\Delta^2 f_i \\ P_2(s) &= 140 + s \times 170 + \frac{s(s-1)}{2!} \times 60 \\ \text{As } s &= 0.4, P_2(0.4) = 140 + 0.4 \times 170 + \frac{0.4(0.4-1)}{2!} \times 60 = 200.80 \text{ m.} \end{split}$$

• The third degree polynomial will be unique for this case. Therefore, it should begin with base point $t_0 = 10.0$ sec.

$$P_{3}(s) = f_{0} + s\Delta f_{0} + \frac{s(s-1)}{2!}\Delta^{2}f_{0} + \frac{s(s-1)(s-2)}{3!}\Delta^{3}f_{0}$$

$$= 50.00 + s \times 90 + \frac{s(s-1)}{2!} \times 80 + \frac{s(s-1)(s-2)}{3!} \times (-20.0)$$

For $t = 24$ seconds, $s = \frac{24 - 10}{10} = 1.4$

$$P_{3}(1.4) = 50.00 + 1.4 \times 90 + \frac{1.4 \times (1.4 - 1)}{2!} \times 80$$

$$+ \frac{1.4 \times (1.4 - 1) \times (1.4 - 2)}{3!} \times (-20.0)$$

=199.52 m.

 \rightarrow So you can see each degree polynomial gives different results.

Newton Backward Difference Polynomial

- As explained for Newton's forward difference polynomials, we can also use backward difference formulas to develop polynomials.
- \rightarrow We can use backward differences
- → For a uniformly spaced data, if x_n is the base in an (n+1) data $(x_0, f_0), (x_1, f_1), \dots, (x_n, f_n),$

$$\nabla f_n = f_n - f_{n-1}$$
, and define $s = \frac{x - x_n}{\Delta x}$.

We have the unique n^{th} degree polynomial in the power series as:

$$P_n(x) = f_n + s\nabla f_n + \frac{s(s+1)}{2!}\nabla^2 f_n + \frac{s(s+1)(s+2)}{3!}\nabla^3 f_n$$

+...+ $\frac{s(s+1)(s+2)\cdots(s+(n-1))}{n!}\nabla^n f_n$

where $\nabla^{(i)} f_n \rightarrow$ shows the *i*th difference.

The proof that this polynomial passes through all the data points can be given as below,

$$\rightarrow \text{Let } s = -1; \text{ i.e. } s = -1 = \frac{x - x_n}{\Delta x} \Rightarrow x = x_n - \Delta x = x_{n-1}.$$

$$P_n(x_{n-1}) = P_n(-1) = f_n + (-1)(f_n - f_{n-1}) + 0 = f_{n-1}.$$

$$\rightarrow \text{Again for } s = -2; \text{ i.e. } s = -2 = \frac{x - x_n}{\Delta x} \Rightarrow x = x_n - 2\Delta x = x_{n-2}.$$

$$P_n(x_{n-2}) = P_n(-2) = f_n + (-2)(f_n - f_{n-1}) + \frac{(-2)(-1)}{2!} [f_n - 2f_{n-1} + f_{n-2}] = f_{n-2},$$
So it's motohing

So it's matching.

 \rightarrow You may work out the examples in this topic.

Inverse Interpolation

x _i	f _i
x _o	f _o
x ₁	f_1
x ₂	f_2
:	:
x _n	f _n

- For a given data set We generally consider 'x' as the independent quantity and 'f' as the dependent quantity.
 - Using polynomial approximations, we also performed interpolations f(x).
 - For the same data, one can also perform inverse interpolations. i.e. the function value 'f' may be available and we can determine the corresponding 'x' value., i.e. *x=f(x)*

 You can now use previously mentioned procedures to form polynomials $P_n(f) = a_0 + a_1 f + a_2 f^2 + \dots + a_n f^n$

- **Directly-fit polynomials** Ο
- Lagrange polynomials Ο
- Newton's polynomials, etc. \bigcirc

Multi-Variate Approximations

- We discussed till now in using polynomials as approximating functions for uni-variate conditions i.e. *f=f(x)*, etc.
- Again many scientific analysis may involve multivariate relationships i.e. Z=f(x,y), etc.
- To analyze such multi-variate problems, again we can use exact-fit polynomials.
- In the exact-fit procedure, two methods
 - Successive univariate polynomials approximation
 - Direct multi-variate polynomial approximation

Successive uni-variate polynomial approximation

 In some of your scientific or engineering problems you may come up with multi-variate data. E.g.

12	x,	×2	×,		25
9.	F ,	312	3.3	***	3 in
	32.	322	323	••••	3an
3	83,	F 282	F		83 m
	3. m.	8m2	Z.,		8

- If such multi-variate data exist, then you may be interested to find a relation Z = f(x,y).
- Again using polynomial approximation we can do interpolation, differentiation, integration etc.
- The method here is
 - * Fit uni-variate polynomials $Z_i(x) = Z(y_i, x)$ for each row

i.e.
$$Z_i = a_0 + a_1 x + a_2 x^2 + \cdots$$

That is to find the respective coefficients for each line.

* If $x = x^*$ is the point where we need to do interploation, then obtain $Z_1(x^*) = c_1$ $Z_2(x^*) = c_2$ \vdots \vdots $Z_m(x^*) = c_m$. Using the *m* equations available. * Now again a univariate polynomial can be obtained using the m-data points c_1, c_2, \dots, c_m

i.e.
$$Z(y, x^*) = b_0 + b_1 y + b_2 y^2 + \cdots$$

* After forming the polynomial by finding coefficients $b_0, b_1, ...$ we can interpolate for $Z(y^*, x^*)$ Example: The enthalpy of a gaseous system (H) measured in kJ/kg by varying pressure (kPa) and temperature (°C). The observations are recorded as such:

	427	538	649
7929	3211	3489	3755
827 /2 mp °C	3205	3487	3753
8618	3199	3482	3751

You are now requested to evaluate enthalpy at *T*= 596 °C and *P* = 8446 kPa.

Solution

There are three different values of T and three different values of P. Using successive univariate approximation:

$$H_{1}(7929,T) = a_{01} + a_{11}T + a_{21}T^{2}$$
$$H_{2}(8274,T) = a_{02} + a_{12}T + a_{22}T^{2}$$
$$H_{3}(8618,T) = a_{03} + a_{13}T + a_{23}T^{2}$$

You are having three different polynomials for H (i.e. H_1, H_2 and H_3). Find the coefficient for each.

For
$$H_1(7929,T) = a_{01} + a_{11}T + a_{21}T^2$$

 $3211 = a_{01} + a_{11} \times 427 + a_{21} \times (427)^2$
 $3489 = a_{01} + a_{11} \times 538 + a_{21} \times (538)^2$
 $3755 = a_{01} + a_{11} \times 649 + a_{21} \times (649)^2$

On solving you get, $a_{01} = 2.029706 \times 10^3$, $a_{11} = 2.974433$, $a_{21} = -0.00048697$.

:. $H_1 = 2.029706 \times 10^3 + 2.974433T - 4.8697 \times 10^{-4}T^2$ Similarly,

 $H_2 = H_2(8274, T) = 1.9710286 \times 10^3 + 3.167113T - 6.49298 \times 10^{-4}T^2$ and

 $H_3 = H_3(8618,T) = 1.979827 \times 10^3 + 3.0978T - 5.681357 \times 10^{-4}T^2$

Using these three polynomials we will evaluate enthalpy H at temperature $T = 596^{\circ}C$. We get, $H_1(7929, 596) = 3629.50 \text{ kJ/kg}$,

 $H_2(8274,596) = 3628 \text{ kJ/kg},$

 $H_3(8618,596) = 3624 \text{ kJ/kg}.$

Using these three evaluated values another polynomial of second degree is constructed as such: $H(P,596) = b_0 + b_1P + b_2P^2$ where b_0, b_1 and b_2 coefficients are evaluated. $3629.50 = b_0 + 7929 \times b_1 + (7929)^2 b_2$ $3628 = b_0 + 8274 \times b_1 + (8274)^2 b_2$ $3624 = b_0 + 8618 \times b_1 + (8618)^2 b_2$

Solving the above you get: $b_0 = 2970.786$, $b_1 = 0.166856$, $b_2 = -1.056616 \times 10^{-5}$. To interpolate, H(8446, 596) = 3626.31 kJ/kg.