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• Multi Point Methods:

• The Euler’s methods and Runge-Kutta
methods that were discussed till now for 
solving IV-ODEs were single step (or single 
point) methods.

• In the time scale, only the information of     
was considered for obtaining  
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• If the information of more than one previous 
instant is used, then the method is called a 
multi-point method.

• Principle of Multi-Point methods:

• We can approximately represent the above 
equation as 
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• at different instants is approximated by 
Newton’s backward difference polynomials.

• So, for the discrete time domain, we have
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• If         is obtained with base point time     , the 
resulting expression will be explicit multi-step 
equation.

• If         is obtained with base point time       , 
then the resulting expression will be implicit 
multi-step equation.
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• If        , we have 

• This integration (1) is called Adams’ finite-
difference equations.

• Explicit ones are called Adams-Bashforth FDEs.

• Implicit ones are called Adams-Moulton FDEs.
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• Fourth Order Adams Bashforth Moulton Method:

• It has already been seen that

• In this case, a third degree polynomial is 
integrated to obtain the fourth degree 
polynomial. So,
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• The explicit solution has been considered first.
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• Backward difference table is as follows:
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• So, substituting all the relevant values in the 
equation, we have

Or, 

This is called Adams-Bashforth fourth order

explicit FDE.

1 1 1 2 1 2 3

1 5 3
2. 3. 3.

2 12 8
n n n n n n n n n n n ny y t f f f f f f f f f f

1 1 2 355 59 37 9
24

n n n n n n

t
y y f f f f



• Similarly, in case we integrate using implicit approach,

• This is the fourth order Adams-Moulton implicit FDE.

• As it is observed difficulty in evaluating  ‘f’ in implicit 
condition, so Adams-Moulton FDE can be simplified by 
predictor-corrector approach (known as 4th order 
Adams-Bashforth-Moulton predictor corrector 

method):
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• To solve IV-ODE’s having Non-Linear Derivative
Functions

• For the IV-ODE

it has been seen that explicit and implicit

methods can be employed. However, when

is non-linear in , then employing the

implicit methods become quite tedious and

difficult.
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• Let us consider the Euler implicit method

• Here,                is non-linear. So, in the time 
scale

is unknown in       

Let us write it as                
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• Hence, we will need to solve the equation

• We need to find out the value of        using 
iterative procedures. Let us define 

• Newton Raphson method suggests that
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• Modified Newton Raphson method suggests 
that

• Here,       is calculated only once. 
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• Example: Solve

using Euler’s implicit method and apply

Newton Raphson method.

• Solution:
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• Using                , we have

• Initial guess is taken as
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• Eventually, after several iterations, we arrive 
at the answer as                       .
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