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 We have discussed the following finite-
difference methods to solve Parabolic PDEs.

O Forward-time Centered Space (FTCS)
O Backward-time Centered Space (BTCS)
O Crank-Nicholson method (where 0O(At?) and

o(Ax*) for derivatives are used).



The next important method is:

e Alternating Direction Implicit Method (ADI)
for Multi-spatial dimension Problems

e |f you have multi-spatial dimension problems
say
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e If you use FTCS, then the FDE will be:

200 f, 60260+ 19

AX® Ay°

fi,(;”l) — fif;‘) + aAt.{

I+1, j N (1)



e Similarly, you can frame fully implicit FDE
using BTCS, i.e.
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 On applying eq.(2) at each grid node (i,j), we
will get a system of linear equation. This
system will be here banded and
pentadiagonal. You can use appropriate
solvers to solve each banded matrix system.



However the implicit technique is

computationally tedious.

We can go for Alternate-Direction Implicit

Method (ADI).

This method involves two steps:

Recall earlier we said
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That is this quantity consist
of half of implicit quantity
and half of explicit quantity.
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e So using these two steps ADI is implemented in the
numerical scheme.



Hyperbolic PDE

 \We have seen before that hyperbolic PDEs are
also

— Propagation problems

— We have to use marching methods to solve hyperbolic
PDEs.

— It has definite (finite) propagation speed for the physical
information propagation.

— You have distinct domain of dependence and range of
influence.

e Some examples of hyperbolic PDE:
of + U of =0 (The Convection Equation)
ot OX
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(The Wave Equation)



 The convection equation is usually used in

O Fluid mechanics
O Heat transfer

e \Wave equation is used for

O Vibrating systems (strings, acoustic fields)

e As usual we can have

O Dirichlet B.C.
O Neumann B.C.
O Mixed B.C.

for various hyperbolic PDEs.



e Recall as hyperbolic PDE has finite range of
influence as well as domain of dependence.

 The finite physical propagation speed is

approximated as H Lo
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Convection Equation

df

e The derivative it in the convection equation

can be approximated using

-> Forward Time or ;4
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 The physical information propagation speed is
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 The solution at a point depends only on the

information in the domain of dependence specified
by upstream characteristic paths.

4 Domain of

4 Influence

Domain of
Depenﬂence
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e The first derivative g—i(spatial) should be

approximated by one-sided approximations in the
direction from which physical information is

propagated. They are upwind approximations.
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We can also use centered space approximations with
acceptable results. i.e.
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*Upwind Methods
* For the convection equation
dx
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* Information propagates with
e If u > 0, information propagates from left to right.

e If u <0, information propagates from right to left.



e First order upwind scheme
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: Foru>0 , i.e.

where ¢ = U—At — Convection Number
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From the stability point of view, you require ¢ <1.0.



This is because the actual speed Lo X
o dt’

Numerical speed ¢ -2
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The convection number suggest that you require
atleast a certain computational speed c, that is not
less than the actual convection speed.

Or, if the actual speed exceeds numerical speed,
results fluctuates.

This again boils down to the criteria that you cannot
have large values of At. If At is large, then
computational convection speed reduces.



