
Optional Course Projects
EE664: Introduction to Parallel Computing

Dr. Gaurav Trivedi

Department of EEE, IIT Guwahati

1

EE664: Optional Course Projects Dr. Gaurav Trivedi

Problem 1

Phase 1 : Parallelization of SGA code using OpenMP.

Phase 2 : Parallelization of OpenMP version of SGA on GPU using CUDA.

SGA (Genetic Algorithm) is an effictive single-objective optimization algorithm proposed in 1994. The

source code of the algorithm is written in C which can be downloaded from my homepage. Using this code

, you have to develope a parallel version of SGA using OpenMP. Please add appropriate comments at each

places of your code for proper understanding of the reviewer. Also the course project requires submission of

a report on the algorithm and your work showing the comparision of speedups for different testcases.

Notes: Before attempting this problem, please make sure you have a good understanding of one of the famous

algorithms, i.e. Genetic Algorithm (GA).

Problem 2

Phase 1 : Parallelization of NSGA II code using OpenMP.

Phase 2 : Parallelization of OpenMP version of NSGA II on GPU using CUDA.

NSGA II (Non-Dominated Sorting Genetic Algorithm II) is a modified version of NSGA proposed in 2002.

The source code of the algorithm is written in C which can be downloaded from my homepage. Using this

code , you have to develope a parallel version of NSGA II using OpenMP. Please add appropriate comments

at each places of your code for proper understanding of the reviewer. Also the course project requires

submission of a report on the algorithm and your work showing the comparision of speedups for different

testcases.

Notes: Before attempting this problem, please make sure you have a good understanding of one of the famous

algorithms, i.e. Genetic Algorithm (GA).

Problem 3

Phase 1 : Parallelization of MOEA code using OpenMP.

Phase 2 : Parallelization of OpenMP version of MOEA on GPU using CUDA.

MOEA (Multi-objective Evolutionary Algorithm) is an efficient multi-objective optimization algorithm. The

source code of the algorithm is written in C & C++, which can be downloaded from my homepage. Using this

code , you have to develope a parallel version of MOEA using OpenMP. Please add appropriate comments

at each places of your code for proper understanding of the reviewer. Also the course project requires

submission of a report on the algorithm and your work showing the comparision of speedups for different

testcases.

Notes: Before attempting this problem, please make sure you have a good understanding of one of the famous

algorithms, i.e. Genetic Algorithm (GA).

2

EE664: Optional Course Projects Dr. Gaurav Trivedi

Problem 4

Phase 1 : Parallelization of PSO (Particle Swarm Optimization) code using OpenMP.

Phase 2 : Parallelization of OpenMP version of PSO on GPU using CUDA.

PSO is an efficient optimization algorithm. The source code of the algorithm is written in C, which can

be downloaded from my homepage. Using this code , you have to develope a parallel version of PSO using

OpenMP. Please add appropriate comments at each places of your code for proper understanding of the

reviewer. Also the course project requires submission of a report on the algorithm and your work showing

the comparision of speedups for different testcases. Before starting, please go through the source code of

PSO for any bugs. If you find any bugs, debug it and please make a proper documentation about the errors

or bugs corrected by you in your course project report.

Notes: Before attempting this problem, please make sure you have a good understanding of one of the famous

algorithms, i.e. Particle Swarm Optimization (PSO).

Problem 5

Phase 1 : Parallelization of SA (Simulated Annealing) code using OpenMP.

Phase 2 : Parallelization of OpenMP version of SA on GPU using CUDA.

SA is one of the most premitive efficient optimization algorithms. The source code of the algorithm is written

in C, which can be downloaded from my homepage. Using this code , you have to develope a parallel version

of SA using OpenMP. Please add appropriate comments at each places of your code for proper understanding

of the reviewer. Also the course project requires submission of a report on the algorithm and your work

showing the comparision of speedups for different testcases. Before starting, please go through the source

code of SA for any bugs. If you find any bugs, debug it and please make a proper documentation about the

errors or bugs corrected by you in your course project report.

Notes: Before attempting this problem, please make sure you have a good understanding of one of the famous

algorithms, i.e. Simulated Annealing (SA).

3

EE664: Optional Course Projects Dr. Gaurav Trivedi

Testcases (for Problem 1-5)

1. Minimize functions f1(x) and f2(x), such that

(a) f1(x) = x2

(b) f2(x) = (x− 2)2

(c) Variable bounds [−103, 103]

Optimal Solution : x ∈ [0, 2]

2. Minimize functions f1(x), f2(x) and g(x), such that

(a) f1(x) = x1

(b) f2(x) = g(x)(1− (x1

g(x))
2)

(c) g(x) = 1 + 9(Σn
i=2xi)/(n− 1)

(d) Variable bounds [0, 1] & n = 30

Optimal Solution : x1 ∈ [0, 1], xi = 0 (for i = 2, . . . , n)

3. Minimize functions f1(x), f2(x) and g(x), such that

(a) f1(x) = x1

(b) f2(x) = g(x)(1−
√

(x1

g(x)))

(c) g(x) = 1 + 9(Σn
i=2xi)/(n− 1)

(d) Variable bounds [0, 1] & n = 30

Optimal Solution : x1 ∈ [0, 1], xi = 0 (for i = 2, . . . , n)

4. Minimize functions f1(x), f2(x) and g(x), such that

(a) f1(x) = x1

(b) f2(x) = g(x)(1−
√

(x1

g(x))−
x1

g(x)sin(10πx1))

(c) g(x) = 1 + 9(Σn
i=2xi)/(n− 1)

(d) Variable bounds [0, 1] & n = 30

Optimal Solution : x1 ∈ [0, 1], xi = 0 (for i = 2, . . . , n)

4

EE664: Optional Course Projects Dr. Gaurav Trivedi

Problem 6

Phase 1 : Parallelization of 2D Poisson’s equation Solver, Using MPI.

Phase 2 : Parallelization of 2D Posisson’s equation Solver using CUDA.

Poisson’s equation

−ε52 φ = ρ

φ is unknown and ρ is known

The solution of Poisson’s or any other partial differential equation (PDE) is obtained by discretizing the

equation over whole domain (geometry) into algebraic form. Later using numerical techniques, the solution

of the partial differential equation is obtained. This problem uses Finite Difference method (FDM) for

discretization. The source code can be downloaded from my homepage. Please add appropriate comments

at each places of your code for proper understanding of the reviewer. Also the course project requires

submission of a report on the algorithm and your work showing the comparision of speedups. If you find

any bugs, debug it and please make a proper documentation about the errors or bugs corrected by you in

your course project report.

Notes: Before attempting this problem, please make sure you have a good understanding of PDE’s, Poisson’s

equation, FDM.

Problem 7

Phase 1 : Parallelization of Finite Element Solution of 2D Poisson’s equation using OpenMP.

Phase 2 : Parallelization of Finite Element Solution of 2D Poisson’s equation using CUDA.

This problem is same as that of above one, except it uses Finite Element Method (FEM) to discretize PDE.

The source code can be downloaded from my homepage. Please add appropriate comments at each places of

your code for proper understanding of the reviewer. Also the course project requires submission of a report

on the algorithm and your work showing the comparision of speedups. If you find any bugs, debug it and

please make a proper documentation about the errors or bugs corrected by you in your course project report.

Notes: Before attempting this problem, please make sure you have a good understanding of PDE’s, Poisson’s

equation, FEM.

Problem 8

Phase 1 : Create test examples of Poisson’s equation in FreeFem++ using MPI.

Phase 2 : Parallelization of FreeFem++ using CUDA.

FreeFem++ is a partial differential equation solver. It has its own language. FreeFem scripts can solve

multiphysics non-linear systems in 2D and 3D. FreeFem++ is written in C++ and the FreeFem++ language

is a C++ idiom. The source code of the library can be downloaded from http://www.freefem.org/ff++/.

Please add appropriate comments at each places of your code for proper understanding of the reviewer. Also

the course project requires submission of a report on the algorithm and your work showing the comparision

Problem 8 continued on next page. . . 5

EE664: Optional Course Projects Dr. Gaurav Trivedi

of speedups. If you find any bugs, debug it and please make a proper documentation about the errors or

bugs corrected by you in your course project report.

Notes: Before attempting this problem, please make sure you have a good understanding of using a C++

open source libraries and how to make changes into it.

Problem 9

Phase 1 : Create test examples of Poisson’s equation in Fenics using MPI.

Phase 2 : Parallelization of Fenics using CUDA.

The FEniCS Project is a collection of free software with an extensive list of features for automated, efficient so-

lution of differential equations. The source code of the library can be downloaded from http://fenicsproject.org/.

Please add appropriate comments at each places of your code for proper understanding of the reviewer. Also

the course project requires submission of a report on the algorithm and your work showing the comparision

of speedups. If you find any bugs, debug it and please make a proper documentation about the errors or

bugs corrected by you in your course project report.

Notes: Before attempting this problem, please make sure you have a good understanding of using a C++

open source libraries and how to make changes into it.

Problem 10

Phase 1 : Create test examples of Poisson’s equation in PETSc using MPI.

Phase 2 : Create test examples of Poisson’s equation in PETSc using MPI-CUDA.

PETSc, pronounced PET-see (the S is silent), is a suite of data structures and routines for the scalable

(parallel) solution of scientific applications modeled by partial differential equations. It supports MPI, and

GPUs through CUDA or OpenCL, as well as hybrid MPI-GPU parallelism. The source code of the library

can be downloaded from http://www.mcs.anl.gov/petsc/. Please add appropriate comments at each

places of your code for proper understanding of the reviewer. Also the course project requires submission of

a report on the algorithm and your work showing the comparision of speedups. If you find any bugs, debug

it and please make a proper documentation about the errors or bugs corrected by you in your course project

report.

Notes: Before attempting this problem, please make sure you have a good understanding of using a C++

open source libraries and how to make changes into it.

6

