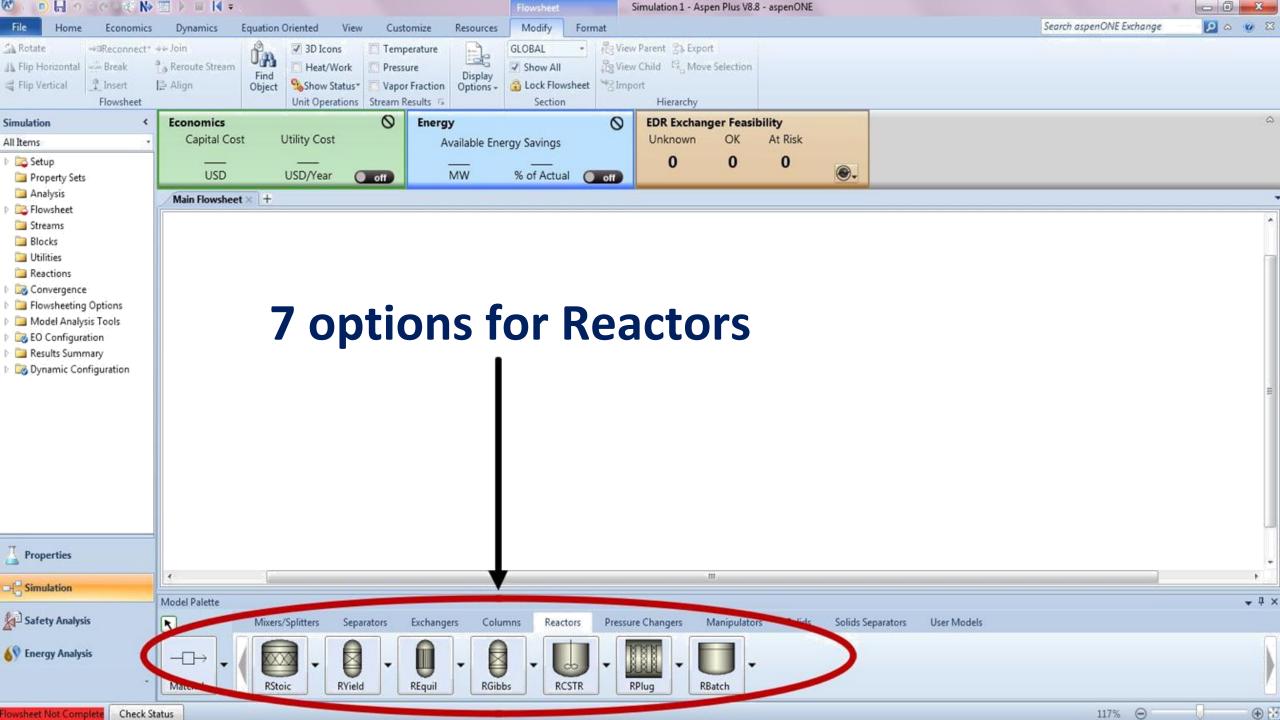

CL-402: Chemical Process Technology


July-November Session, 2018

7th semester, Department Of Chemical Engineering Indian Institute Of Technology Guwahati, Guwahati

Reactor Models in Aspen Plus V8.8

🕙 🕕 🕘 🔚 🔿 🖓 🐼 🕪	Simulation 1 - Aspen Plus V8.8 - aspenONE	
File Home View	Customize Resources	Search aspenONE Exchange 💋 🛆 🥑 🔀
Copy Hunit Sets Copy Rest Clipboard Units	Setup Na* Chemistry Components Customize Methods Draw Navigate Tools Methods Bata Source Regression Run Mode Run Mode Run mark Components - Specifications × +	5
Properties		
All Items All Items Setup Secup Specifications All Molecular Structure Assay/Blend Light End Properties Petro Characterization Petro Characterization Petro Characterization Peropent Attributes Henry Comps UNIFAC Groups UNIFAC Groups UNIFAC Groups Data Chemistry Property Sets Data Analysis Customize Results Properties	Selection Petroleum Nonconventional Enterprise Database Information	s
Simulation Safety Analysis		
69 Energy Analysis	• •[
Required Input Incomplete Ch	eck Status	100% 🖂 🗍 💮

Model	Description	Purpose	Use For
RStoic	Stoichiometric reacto	Models stoichiometric reactor with specified reaction extent or conversion. r	Reactors where reaction kinetics are unknown or unimportant but stoichiometry and extent or conversion of reaction are known.
RYield	Yield reactor	Models reactor with specified yield.	Reactors where stoichiometry and kinetics are unknown or unimportant but a yield distribution is known. Can model one-, two-, and three-phase reactors.

Model	De	scription	Purpo	se	Use For
			Models continuo tank reactor.	,	o, or three-phase ank reactors with
RCSTR	Contin	uous stirred tank reactor		equilibr phase ba	trolled and ium reactions in any ased on known metry and kinetics.
			Models plug flow		o-, or three-phase
RPlug	Plu	g flow reactor		controll phase ba	w reactors with rate- ed reactions in any ased on known metry and kinetics.
			Models batch or	/	o-, or three-phase
RBatch	Ba	atch reactor	batch reactor.	reactors reaction	nd semi-batch with rate-controlled s in any phase based n stoichiometry and

For RCSTR, RPlug, and RBatch, you must provide reaction kinetics information using: (rigorous models)

- •The built in power law model.
- •The built in generalized Langmuir Hinshelwood Hougen Watson (LHHW) model.
- •A user written Fortran subroutine.

Model	Description	Purpose	Use For
REquil	Equilibrium reactor	Performs chemical and phase equilibrium by stoichiometric calculations.	Reactors with simultaneous chemical equilibrium and phase equilibrium. REquil can model one- and two-phase reactors.
RGibbs	Equilibrium reactor with mini Gibbs energy minimization	Performs chemical and phase equilibrium by Gibbs energy imization.	Reactors with phase equilibrium or simultaneous phase and chemical equilibrium. Calculating phase equilibrium for solid solutions and vapor- liquid-solid systems.

How RGibbs block works?

- At equilibrium at constant temperature and pressure, the Gibbs energy should be a minimum.
- Aspen develop a general expression for the Gibbs energy of the system in terms of the number of moles of all species

present, reactants, products, and inert species, and in all phases. The calculation then is to vary the number of moles of

each species in each phase subject to the stoichiometric constraints and find a solution that minimizes the total Gibbs

energy of the system. In this way, a general minimization algorithm can be used to solve all chemical reaction

equilibrium problems.