MA 201 (Part II), July-November, 2022 session PARTIAL DIFFERENTIAL EQUATIONS

Problem Sheet - 2, Date of Discussion: October 21, 2022

Topics: 2nd order PDEs with constant coefficients, Classification of 2nd order PDEs, Canonical forms, The wave equation: Infinite string problem (D'Alembert's solution)

Lectures 6–8

- 1. Find the general solution of
 - (i) $3u_{xx} + 10u_{xy} + 3u_{yy} = 0$,
 - (ii) $u_{xx} + 4u_{xy} + 4u_{yy} = 0$,
 - (iii) $u_{xxx} 2u_{xxy} u_{xyy} + 2u_{yyy} = 0.$
- 2. Why is it so that only the principal part $Au_{xx} + Bu_{xy} + Cu_{yy}$ of the 2nd-order PDE $Au_{xx} + Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu + G = 0$ determines the nature of the PDE?
- 3. Classify the following second-order partial differential equations:
 - (i) $u_{xx} + 4u_{xy} + 4u_{yy} 12u_y + 7u = x^2 + y^2$; (ii) $u_{xx} + 4u_{xy} + (x^2 + 4y^2)u_{yy} = \sin(x+y)$
 - (iii) $(x+1)u_{xx} 2(x+2)u_{xy} + (x+3)u_{yy} = 0$; (iv) $yu_{xx} + (x+y)u_{xy} + xu_{yy} = 0$.
- 4. Reduce the following equations to canonical form and hence solve them:
 - (i) $u_{xx} + 4u_{xy} + 3u_{yy} = 0$; (ii) $4u_{xx} 12u_{xy} + 9u_{yy} = e^{3x+2y}$, (iii) $u_{xx} + 2u_{xy} + u_{yy} = x^2 + 3\sin(x 4y)$
- 5. Find D'Alembert's solution of one-dimensional wave equation with the following initial conditions:
 - (i) $u(x,0) = \sin x$, $u_t(x,0) = 0$, (ii) $u(x,0) = \sin x$, $u_t(x,0) = \cos x$.
- 6. A string stretching to infinity in both directions is given the initial displacement

$$\phi(x) = \frac{1}{1 + 4x^2}$$

and released from rest. Find its subsequent motion as a function of x and t.