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Boundary and Initial Conditions

Boundary conditions are conditions prescribed on the boundary.

Boundary may be a boundary with respect to any of the independent variables.

Initial conditions are conditions prescribed at one point only.

These conditions are in terms of the value of some form of the dependent variable

(may be in terms of its derivatives too) at some specific value of the independent

variable.

The main component of this type of problems is what is called Governing Equation.
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Boundary and Initial Conditions (contd..)

With respect to ODEs,

we can have only boundary conditions or only initial conditions, not both for the same problem.

They are, respectively, called boundary value problems or initial value problems.

However, with respect to PDEs (evolution equations)

we may have both boundary conditions and initial conditions for the same problem.

This type of problems are called

Initial Boundary Value Problems (IBVP).

Time-independent PDEs

form Boundary Value Problems, not IBVPs.
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BVPs and IVPs

A boundary value problem is a differential equation together with a set of additional constraints,

called the boundary conditions.

Depending on the order of the equation, those conditions are prescribed on the boundary in terms

of the values of the variables or its derivative(s).

In other words, a solution to a BVP is a solution to the differential equation which also satisfies

the boundary conditions.

To be useful in applications, a BVP should be well-posed. This means that given the input to the

problem there exists a unique solution, which depends continuously on the input.

An initial value problem (IVP) consists of a differential equation and a set of conditions to be

satisfied at the initial value of the independent variable or its derivative(s) (for ODE) or at that of

one of the independent variables or its derivative(s) (for PDE).
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BVPs and IVPs

A more mathematical way to picture the difference between a BVP and an IVP is

an IVP has all of the conditions specified at the same value of the independent variable in the

equation (and that value is at the lower value of the boundary of the domain, thus the term

‘initial’ value), while a BVP has conditions specified at the extremes of the independent

variable(s).

For example

for a second-order differential equation

if the independent variable is time over the domain [0, 1], an IVP would specify a value of y(t)

and y ′(t) at time t = 0, to be precise, the initial conditions will be something like

y(0) = α, y ′(0) = β.

On the other hand

a BVP would specify values for y(t) (or its derivatives) at both t = 0 and t = 1, to be precise,

the boundary conditions will be something like y(0) = α1, y(1) = β1 or y ′(0) = α2, y
′(1) = β2.
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Differential Equations: Second-order

Theorem

Let y1(x) and y2(x) be any two solutions of equation

y ′′ + P(x)y ′ +Q(x)y = 0 (1)

on [a,b]. Then their Wronskian W = W (y1, y2) = y1y
′

2 − y
′

1y2 is either identically zero or never

zero on [a,b].

Proof:

First we begin with the following observation:

W ′ = y1y
′′

2 + y1y
′

2 − y2y
′′

1 − y
′

2y
′

1

= y1y
′′

2 − y2y
′′

1 .

Since y1(x) and y2(x) are both solutions of (1), we have

y
′′

1 + Py
′

1 +Qy1 = 0, (2)

y
′′

2 + Py
′

2 +Qy2 = 0. (3)
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Differential Equations: Second-order

On multiplying (2) by y2 and (3) by y1 and subtracting

(y1y
′′

2 − y2y
′′

1 ) + P(y1y
′

2 − y2y
′

1) = 0

which can be written as
dW

dx
+ PW = 0.

The solution of this equation can be obtained as

W = ce−
∫
Pdx .

Since the exponential factor is never zero, we see that W is identically zero if the constant c = 0,

and never zero if c 6= 0.

This completes the proof.

Theorem:

Let y1(x) and y2(x) be two solutions of equation (1) on the interval [a,b]. Then they are linearly

dependent on this interval if and only if their Wronskian W = W (y1, y2) = y1y
′

2 − y2y
′

1 is

identically zero.
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Differential Equations: Second-order

Proof:

We begin by assuming that y1(x) and y2(x) are linearly dependent and show that it leads to

y1y
′

2 − y2y
′

1 = 0.

If both or one of the functions are(is) identically zero, then the conclusion is obvious. We,

therefore, assume that neither of them is identically equal to zero and are such that linear

dependence allows us to write each to be a constant multiple of the other.

By writing y2 = cy1 for some constant c, we have y
′

2 = cy
′

1 . This leads to

y1y
′

2 − y2y
′

1 = y1(cy
′

1) − (cy1)y
′

1 = 0,

which proves the first half of the theorem.

On the contrary, assume that their Wronskian W is identically equal to zero and establish their

linear dependence. If y1 is identically zero on [a,b], then the functions are linearly dependent.
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Differential Equations: Second-order

Therefore, we may assume that y1 does not vanish identically on [a, b] from which it follows by

continuity that y1 does not vanish at all on some sub-interval [c, d] of [a,b].

Since the Wronskian is identically equal to zero on [a,b], we can divide it by y2
1 to get

y1y
′

2 − y2y
′

1

y2
1

= 0

on [c, d].

The above can be written in the form (y2/y1)
′

= 0 which on integration gives us y2/y1 = k or

y2(x) = ky1(x) for some constant k and all x in [c, d].

Finally, since y2(x) and ky1(x) have equal values in [c, d], they have equal derivatives there as

well and hence we can conclude that

y2(x) = ky1(x)

for all x in [a,b] implying that y1(x) and y2(x) are linearly dependent in [a,b] which completes

the proof.
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Differential Equations: Second-order

Example:

Show that y = c1 sin x + c2 cos x is the general solution of y ′′ + y = 0 on any interval, and find

the particular solution for which y(0) = 2 and y ′(0) = 3.

Solution:

It can be easily verified that y1(x) = sin x and y2 = cos x are solutions of the given equation.

Their linear independence on any interval [a, b] follows from the either of the following:

y1/y2 = tan x is not a constant,

Their Wronskian never vanishes:

W (y1, y2) =

∣

∣

∣

∣

∣

sin x cos x

cos x − sin x

∣

∣

∣

∣

∣

= − sin2 x − cos2 x = −1.

Since P(x) = 0 and Q(x) = 1 are continuous on [a, b], it follows that y = c1 sin x + c2 cos x is the

general solution of the given equation on [a,b].

Further, since the interval [a, b] can be expanded indefinitely without introducing points at which

P(x) or Q(x) is discontinuous, this general solution is valid for all x .
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Differential Equations: Second-order

For finding the required particular solution, we use the conditions y(0) = 2 and

y
′(0) = 3 to get and solve the following system:

c1 sin 0 + c2 cos 0 = 2,

c1 cos 0− c2 sin 0 = 3,

which yields c2 = 2 and c1 = 3.

Therefore

y = 3 sin x + 2 cos x

is the particular solution that satisfies the given conditions.

Note:

The concepts of linear dependence and independence has much wider implication than what is

observed here. The best examples are found in linear algebra, algebra, geometry and analysis.
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Differential Equations: Second-order

The use of a known solution to find another:

Recall the general second-order linear equation:

y ′′ + P(x)y ′ + Q(x)y = 0. (4)

We know that

it is easy to write down the solution of equation (4) whenever we know two linearly independent

solutions y1(x) and y2(x).

If y1(x) is given to be one of the solutions, then the second solution can be found from the

following relation:

y2 = y1

∫

1

y2
1

e−
∫
P dx dx (5)

This relation can be obtained in the following manner:

Let y2 = vy1 to be a solution of (4) so that

y
′′

2 + Py
′

2 + Qy2 = 0. (6)
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Differential Equations: Second-order

Then equation (6) becomes

v(y
′′

1 + Py
′

1 +Qy1) + v
′′

y1 + v ′(2y
′

1 + Py1) = 0.

Since y1 is a solution of (4), we have y
′′

1 + Py
′

1 +Qy1 = 0 and hence this reduces to

v
′′

y1 + v ′(2y
′

1 + Py1) = 0

or,

v
′′

v ′
= −2

y
′

1

y1
− P.

On integration,

ln v ′ = −2 ln y1 −

∫

P dx

so that

v ′ =
1

y2
1

e−
∫
P dx .

MA542 13 / 15



Differential Equations: Second-order

Therefore,

v =

∫

1

y2
1

e−
∫
P dx dx

This gives the second solution y2 as

y2 = y1

∫

1

y2
1

e−
∫
P dx dx .

By showing that y1 and y2 = vy1 are linearly independent, the general solution can be written as

y(x) = c1y1(x) + c2y2(x)

Example:

If y1 = x is a solution of x2y ′′ + xy ′ − y = 0, then find the general solution.
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Differential Equations: Second-order

Solution: The given equation can be written as

y ′′ +
1

x
y ′ −

1

x2
y = 0

with P(x) = 1/x .

This gives the second solution y2 as

A second linearly independent solution is given by y2 = vy1, where

v =

∫

1

x2
e−

∫
(1/x) dx dx =

∫

1

x2
e− ln x dx =

∫

x−3 dx =
x−2

−2
.

This yields

y2 = vy1 = (−
1

2x2
)x = (−1/2)

1

x
so that the general solution is given by

y = c1x + c2
1

x
.
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