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Green’s Function for PDEs

Green’s Function for Poisson’s equation

We are going to analyze Green’s function for Poisson’s equation, a time-independent partial

differential equation,

Lu = f , (1)

where L = ∇2, the Laplacian. Initially we will assume that u satisfies homogeneous boundary

conditions and that the region is finite.

The following Green’s formula will be frequently used, either in its three- or two-dimensional

forms:
∫∫∫

(u∇2v − v∇2u)dV =

∫∫

©(u∇v − v∇u) · n̂ dS, (2)

∫∫

(u∇2v − v∇2u)dA =

∮

(u∇v − v∇u) · n̂ ds. (3)

Multidimensional Dirac delta function and Green’s function

The Green’s function is defined as the solution to the non-homogeneous problems with

concentrated source, subject to homogeneous boundary conditions. We define a two-dimensional

Dirac delta function as the product of two one-dimensional Dirac delta functions.
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Green’s Function for PDEs

If the source is concentrated at x = x0 (x = x î + y ĵ, x0 = x0 î + y0 ĵ), then

δ(x − x0) = δ(x − x0)δ(y − y0). (4)

Similar ideas hold in three dimensions. The fundamental property of this multidimensional Dirac

delta function is that
∫

∞

−∞

∫

∞

−∞

f (x)δ(x − x0)dA = f (x0). (5)

When opened up, this becomes
∫

∞

−∞

∫

∞

−∞

f (x , y)δ(x − x0)δ(y − y0)dxdy = f (x0, y0). (6)

In order to solve the non-homogeneous partial differential equation

∇2u = f (x), (7)

subject to homogeneous conditions along the boundary, we introduce the Green’s function

G(x, x0) for Poisson’s equation (it is also called the Green’s function for Laplace’s equation).
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Green’s Function for PDEs

In other words,

∇2G(x, x0) = δ(x − x0), (8)

subject to the same homogeneous boundary conditions.

Here G(x, x0) represents the response at x due to a source at x0.

Representation formula using Green’s function

Green’s formula, in its two-dimensional form, with v = G(x, x0) becomes

∫∫

(u∇2G − G∇2u)dA = 0,

since both u(x) and G(x, x0) satisfy the same homogenous boundary conditions such that
∮

(u∇G − G∇u) · n̂ ds vanishes.

From (7) and (8), it follows that

u(x0) =

∫∫

f (x)G(x, x0)dA. (9)
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Green’s Function for PDEs

If we reverse the roles of x and x0, we obtain

u(x) =

∫∫

f (x0)G(x0, x)dA0. (10)

Symmetry

We here use Green’s formula for the same problem with G(x, x1) and G(x, x2). Since both satisfy

the same homogenous boundary conditions, we have

∫∫

[G(x, x1)∇
2G(x, x2)− G(x, x2)∇

2G(x, x1)] dA = 0.

Since ∇
2
G(x, x1) = δ(x− x1) and ∇

2
G(x, x2) = δ(x− x2),

it follows, using the fundamental property of the Dirac delta function, that G(x1, x2) = G(x2, x1);

the Green’s function is symmetric, or rather we can say that it is unique.
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Green’s functions by the method of eigenfunction expansion

One method to obtain the Green’s function for Poisson’s equation in a finite region is to use an

eigenfunction expansion.

We consider the related eigenfunctions:

∇2u = −λu (11)

subject to the same homogenous boundary conditions.

We assume that the eigenvalues and corresponding orthogonal eigenfunctions are known. Simple

examples occur in rectangular and circular regions.

We attempt to solve for the Green’s function G(x, x0) from

∇2G(x, x0) = δ(x − x0) (12)

as an infinite series of eigenfunctions:

G(x, x0) =
∑

λ

aλuλ(x). (13)
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Green’s Function for PDEs

Here uλ(x) is the eigenfunction corresponding to the eigenvalue λ.

Since uλ and G(x, x0) satisfy the same homogeneous boundary conditions, we expect to be able

to differentiate term-by-term:

∇2G =
∑

λ

aλ∇
2uλ = −

∑

λ

aλλuλ(x). (14)

This can be verified by using Green’s formula. Since ∇2G = δ(x − x0), due to the

multidimensional orthogonality of uλ(x), it follows that

−aλλ =

∫∫

uλ(x)δ(x − x0)dA
∫∫

u2
λ
(x)dA

=
uλ(x0)
∫∫

u2
λ
dA

.

If λ = 0 is not an eigenvalue, then we can determine aλ and subsequently the eigenfunction

expansion of the Green’s function:

G(x, x0) =
∑

λ

uλ(x)uλ(x0)

−λ
∫∫

u2
λ
dA

. (15)
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Green’s Function for PDEs

This is the natural generalization of the one-dimensional result for Green’s function corresponding

to a non-homogenous Sturm-Liouville problem.

Example:

For a rectangle 0 < x < a, 0 < y < b with boundary conditions zero on all four sides, it can be

seen that the eigenvalues are λmn = (nπ/a)2 + (mπ/b)2 , n = 1, 2, 3, . . . and m = 1, 2, 3, . . . and

the corresponding eigenfunctions are

uλ(x) = sin(nπx/a) sin(mπy/b).

In this case the normalization constants are u2
λ
dx dy = (a/2) · (b/2).

The Green’s function can be expanded in a series of these eigenfunctions, a Fourier sine series in

x and y ,

G(x, x0) = −
4

ab

∞
∑

n=1

∞
∑

m=1

sin(nπx/a) sin(mπy/b) sin(nπx0/a) sin(mπy0/b)

(nπ/a)2 + (mπ/b)2
.
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Green’s Function for PDEs

Direct Solution of Green’s Functions

Green’s functions can also be obtained by more direct methods. Consider the Green’s function for

Poisson’s equation,

∇2Gδ(x, x0) = δ(x − x0), (16)

inside a rectangle 0 < x < a, 0 < y < b with zero boundary conditions.

Instead of solving for this Green’s function using a series of two-dimensional eigenfunctions (as

done previously a while ago), we will use one-dimensional eigenfunctions, either a sine series in x

or y due to the boundary conditions. Using a Fourier series in x ,

G(x, x0) =
∞
∑

n=1

An(y) sin
nπx

a
. (17)

By substituting (17) into (16), we obtain (since both G(x, x0) and sin
nπx

a
satisfy the same set of

homogenous boundary conditions),

∞
∑

n=1

[

d2An

dy2
−

(nπ

a

)2
An

]

sin
nπx

a
= δ(x − x0)δ(y − y0).
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Green’s Function for PDEs

Or

d2An

dy2
−

(nπ

a

)2
An =

2

a

∫ a

0
δ(x − x0)δ(y − y0) sin

nπx

a
dx

=
2

a
sin

nπx0

a
δ(y − y0). (18)

The boundary conditions at y = 0 and y = b imply that the Fourier coefficients must satisfy the

corresponding boundary conditions

An(0) = 0 and An(b) = 0. (19)

Equation (18) with boundary conditions (19) may be solved by a Fourier sine series in y . On the

other hand, since the non-homogeneous term for An(y) is a one-dimensional Dirac delta function,

we may solve (18) as we have done for Green’s function.

The differential equation is homogeneous if y 6= y0.
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Green’s Function for PDEs

In addition if we utilize the boundary conditions, we obtain

An(y) =

{

cn sinh
nπy
a

sinh nπ(y0−b)
a

, y < y0

cn sinh
nπ(y−b)

a
sinh nπy0

a
, y > y0,

where in this form continuity at y = y0 is automatically satisfied.

Again, we integrate (18) from y0− to y0+ to obtain the jump in the derivative:

dAn

dy

∣

∣

∣

∣

y0+

y0−

=
2

a
sin

nπx0

a

or

cn
nπ

a

[

sinh
nπy0

a
cosh

nπ(y0 − b)

a
− sinh

nπ(y0 − b)

a
cosh

nπy0

a

]

=
2

a
sin

nπx0

a
(20)

Using an addition formula for hyperbolic functions we obtain

cn =
2 sin(nπx0/a)

nπ sinh(nπb/a)
.
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Green’s Function for PDEs

This yields the Fourier sine series (in x) representation of the Green’s function

G(x, x0) =
∞
∑

n=1

2 sin(nπx0/a) sin(nπx/a)

nπ sinh(nπb/a)

{

sinh nπ(y0−b)
a

sinh nπy
a

, y < y0

sinh
nπ(y−b)

a
sinh nπy0

a
, y > y0.

(21)

The symmetry is exhibited explicitly.

Green’s functions for problems with non-homogeneous boundary conditions:

The same methods used in the preceding sections can be used to solve Poisson’s equation

∇2u = f (x) subject to non-homogeneous boundary conditions.

Consider

∇2u = f (x) (22)

with

u = h(x) (23)

on the boundary.
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Green’s Function for PDEs

The Green’s function is defined by

∇2G(x, x0) = δ(x − x0), (24)

with

G(x, x0) = 0 (25)

for x on the boundary (x0 is often not on the boundary).

The Green’s function satisfies the related homogeneous boundary conditions. To obtain the

Green’s function representation of the solution of (22) and (23), we again employ Green’s formula:

∫∫

(u∇2G − G∇2u)dA =

∮

(u∇G − G∇u) · n̂ ds.

Using the defined differential equations and the boundary conditions,

∫∫

[u(x)δ(x − x0)− f (x)G(x, x0)]dA =

∮

h(x)∇G · n̂ ds,

and hence

u(x0) =

∫∫

f (x)G(x, x0)]dA+

∮

h(x)∇G · n̂ ds.
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We interchange x and x0, and we use the symmetry of G(x, x0) to obtain

u(x) =

∫∫

f (x0)G(x, x0)]dA0 +

∮

h(x0)∇x0
G · n̂ ds0. (26)

We must be very careful with the closed line integral, representing the effect of the

non-homogenous boundary condition. ∇x0
is a symbol for the gradient with respect to the

position of the source

∇x0
≡

∂

∂x0
î +

∂

∂y0
ĵ .

Thus G(x, x0) is the influence function for the source term while ∇x0
G · n̂ is the influence

function for the non-homogeneous boundary conditions.

Let us attempt to give an understanding to the influence function for the non-homogeneous

boundary conditions ∇x0
G · n̂. This is an ordinary derivative with respect to the source position in

the normal direction.
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Green’s Function for PDEs

Using the definition of a directional derivative,

∇x0
G · n̂ = lim

∇s→0

G(x, x0 +∆sn̂)− G(x, x0)

∆s
.

This yields an interpretation of this normal derivative of the Green’s function. (x, x0 +∆sn̂)/∆s

is the response to a positive source of strength 1/∆s located at x0 +∆sn̂, while −G(x, x0)/∆s is

the response to a negative source (strength −1/∆s) located at x0.

The influence function for the non-homogeneous boundary condition consists of two concentrated

sources of opposite effects whose strength is 1/∆s and distance apart is ∆s, in the limit as

∆s → 0.

This is called a dipole source. Thus this non-homogeneous boundary condition has an equivalent

effect as a surface distribution of dipoles.
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