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Green’s Function for PDEs

The general time-dependent heat conduction or diffusion problems are governed by equations of

the type
∂u

∂t
= α∇2u −Q (1)

subject to appropriate boundary conditions, may be homogeneous or non-homogeneous, and an

initial condition. The solution is u ≡ u(x̄, t) and α is the thermal diffusivity, Q ≡ Q(x̄, t) a source

of heat.

Irrespective of the type of the domain, which is bounded, the solution u for the problem has to

satisfy all the related equations. The most natural and easily available time-independent PDEs

are the elliptic ones, namely, Poisson’s equation and Laplace’s equation.

The steady-state problem, i.e., the time-independent one, is governed by

∇2u = Q, (2)

which is Poisson’s equation, and u and Q are functions of space coordinates only.
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Green’s Function for PDEs

The homogeneous form of Poisson’s equation, i.e., when Q = 0, is Laplace’s equation:

∇2u = 0. (3)

While equation (??) is a standard parabolic equation, equations (??) and (??) are standard

elliptic equations.

These type of equations arise in many physically interesting problems such as heat conduction

and potential flow of fluids.

Let us first consider Poisson’s equation (??) from the point of view of heat conduction.
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Green’s Function for PDEs

Without specifying the geometrical region, we assume that the temperature is specified on the

boundary:

u = β,

where β is given and is usually not constant.

This problem is nonhomogeneous in two ways: due to the forcing term Q and the non-zero

boundary condition β.

We can split the equilibrium temperature into two parts: u = u1 + u2, where u1 is due to the

forcing term and u2 is due to the boundary condition:

∇2u1 = Q, u1 = 0 on the boundary,

∇2u2 = 0, u2 = β on the boundary.

It can be easily verified that u = u1 + u2 satisfies Poisson’s equation and the non-homogeneous

BC. The problem for u2 is the solution of Laplace’s equation with non-homogeneous BC.
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Green’s Function for PDEs

We focus our attention on Poisson’s equation

∇2u1 = Q

with homogeneous BC, i.e., u1 = 0 on the boundary.

Since u1 satisfies homogenous BC, we expect that the method of eigenfunction expansion is

appropriate.

The problem can be analyzed in two different ways:

(1) we can expand the solutions in eigenfunctions of the related homogenous problem, coming

from separation of variables of ∇2u1 = 0, or

(2) we can expand the solution in the eigenfunctions

∇2φ+ λφ = 0.

These two methods are different but related.
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Green’s Function for PDEs

To be specific, let us consider the two-dimensional Poisson’s equation in a rectangle

0 < x < a,0 < y < b with zero conditions along all four boundaries, namely x = 0, x = a, y = 0

and y = b:

∇2u1 = Q. (4)

The related homogeneous problem, ∇2u1 = 0, which is Laplace’s equation, can be separated in

rectangular coordinates.

The method of eigenfunction expansion consists of expanding u1(x , y) in a series of these

eigenfunctions:

u1 =
∞
∑

n=1

Bn(y) sin
(nπx

a

)

, (5)

where the sine coefficients Bn(y) are functions of y .

Our equation is
∂2u1

∂x2
+

∂2u1

∂y2
= Q(x , y).
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Green’s Function for PDEs

Differentiating (??) twice with respect to y and substituting this into Poisson’s equation (??), we

get
∞
∑

n=1

d2Bn

dy2
sin

(nπx

a

)

+
∂2u1

∂x2
= Q. (6)

∂2u1

∂x2
can be determined in two related ways: term-by-term differentiation with respect to x of

the series (??) which is more direct or by Green’s formula.

In either way, we obtain from (??),

∞
∑

n=1

[

d2Bn

dy2
−

(nπ

a

)2
Bn

]

sin
(nπx

a

)

= Q, (7)

since both u1 and sin(nπx/a) satisfy the same homogenous boundary conditions.
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Green’s Function for PDEs

Thus the Fourier sine coefficients satisfy the following second-order ordinary differential equation:

d2Bn

dy2
−

(nπ

a

)2
Bn =

2

a

∫ a

0
Q(x , y) sin

(nπx

a

)

dx ≡ qn(y), (8)

where the right-hand side is the sine coefficient of Q:

Q =
∞
∑

n=1

qn sin
(nπx

a

)

. (9)

We must now solve (??).

We need two conditions for that. u satisfies Poisson’s equation and the boundary conditions at

x = 0 and x = a. The boundary conditions at y = 0 (for all x), u1 = 0, and at y = b (for all x),

u1 = 0, imply that

Bn(0) = 0, and Bn(b) = 0. (10)

Thus, the unknown coefficients in the method of eigenfunction expansion themselves solve a

one-dimensional non-homogeneous BVP.
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Green’s Function for PDEs

By using the methods of variation of parameters, the solution for Bn(y) can be

found as

Bn(y) = sinh

(

nπ(b − y)

a

)
∫ y

0
qn(ξ) sinh

(

nπξ

a

)

dξ

+sinh
(nπy

a

)

∫ b

y

qn(ξ) sinh

(

nπ(b − ξ)

a

)

dξ

=

∫ b

0
G(y , ξ)qn(ξ)dξ, (11)

where

G(y , ξ) =







sinh nπ(b−y)
a

sinh
(

nπξ
a

)

, 0 ≤ ξ < y ,

sinh
(

nπy
a

)

sinh
(

nπ(b−ξ)
a

)

, y < ξ ≤ b.
(12)
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Green’s Function for PDEs

Thus we can get solution u1 of Poisson’s equation (with homogenous boundary conditions) using

the x-dependent related one-dimensional homogeneous eigenfunctions:

u1(x , y) =
∞
∑

n=1

(
∫ b

0
G(y , ξ)qn(ξ)dξ

)

sin
(nπx

a

)

.

Problems with nonhomogeneous boundary conditions (that is the whole problem) can be solved

by solving Laplace’s equation with non-homogeneous boundary conditions (for u2).

It may be noted that in this case, the distributed source Q(x , y) is considered

along y = ξ (concentrated line source).

The problem can be reworked by considering the distributed source Q(x , y) as

concentrated source along x = ζ too.
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Green’s Function for PDEs

For this case, the eigenfunctions sin
(nπy

b

)

can be used to write the solution as

An(x) = sinh

(

nπ(a − x)

b

)
∫ x

0
qn(ζ) sinh

(

nπζ

b

)

dζ

+sinh
(nπx

b

)

∫ a

x

qn(ζ) sinh

(

nπ(a − ζ)

b

)

dζ

=

∫ a

0
G(x , ζ)qn(ζ)dζ, (13)

where

G(x , ζ) =







sinh nπ(a−x)
b

sinh
(

nπζ

b

)

, 0 ≤ ζ < x ,

sinh
(

nπx
b

)

sinh
(

nπ(a−ζ)
b

)

, x < ζ ≤ a.
(14)
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Green’s Function for PDEs

Thus we can get solution u1 of Poisson’s equation (with homogenous boundary conditions) using

the x-dependent related one-dimensional homogeneous eigenfunctions:

u1(x , y) =
∞
∑

n=1

(
∫ a

0
G(x , ζ)qn(ζ)dζ

)

sin
(nπy

b

)

.

Flashback 1

Solutions to linear partial differential equations are nonzero due to initial conditions,

non-homogeneous boundary conditions and forcing terms.

Flashback 2

If the partial differential equation is homogeneous and there is a set of homogeneous boundary

conditions, then we usually attempt to solve the problem by the method of separation of variables.
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Green’s Function for PDEs

Remark 1

When we consider problems without initial conditions (ordinary differential equations, Laplace’s

equation with sources), we can show that there is one auxiliary function for each problem, called

the Green’s function, which can be used to describe the influence of both nonhomogeneous

boundary conditions and forcing terms.

Remark 2

It is to be noted that time-dependent problems such as the ones governed by heat equation

(parabolic equations) and wave equation (hyperbolic equations) are more difficult to tackle by

this method.

Remark 3

In that sense, Green’s functions for elliptic equations assumes more significance.

Remark 4

In other works, Green’s functions can be suitably considered for steady state problems (BVP), but

NOT for evolution problems (IVP or IBVP).
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