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Steady-state heat conduction in a circular cylinder

Consider a right circular cylinder of radius a and height L having

(a) its convex surface and base in the xy-plane at temperature 00C,

(b) the top end z = L is kept at temperature f(r)0C.

To find the steady-state temperature at any point of the cylinder.

The governing equation for this problem will be Laplace’s equation in r, θ, z.

∇2u(r, θ, z) ≡
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
+

∂2u

∂z2
= 0.

For simplicity, we will consider radially symmetric solution for the Laplace’s

equation.

Radially symmetric solution means that u(r, θ, z) = u(r, z) that is the solution doesn’t depend

on the polar angle θ.

In other sense, solutions are symmetric under rotation.
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Steady-state heat conduction in a circular cylinder

But assuming that the cylinder is symmetrical about its axis, Laplace’s equation

takes the form:

urr +
1

r
ur + uzz = 0, 0 < r ≤ a, 0 ≤ z ≤ L. (1)

The boundary conditions are:

(on the curved portion) u(a, z) = 0, 0 ≤ z ≤ L, (2a)

(on the bottom) u(r, 0) = 0, 0 < r ≤ a, (2b)

(on the top) u(r, L) = f(r), 0 < r ≤ a. (2c)

Assume a solution in the form

u(r, z) = R(r)Z(z).

Applying it to the governing equation (1):

R′′

R
+

1

r

R′

R
+

Z ′′

Z
= 0.
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Steady-state heat conduction in a circular cylinder

By separating the variables:

R′′

R
+

1

r

R′

R
= −

Z ′′

Z
= k.

Observing that only the negative value of the separation constant will give rise to

nontrivial solutions,

we get the following ODEs by considering k = −λ2:

Z ′′ − λ2Z = 0, (3)

R′′ +
1

r
R′ + λ2R = 0, (4)

The solutions of the above equations are, respectively, given by

Z(z) = A sinhλz +B coshλz, (5)

R(r) = CJ0(λr) +DY0(λr). (6)
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Steady-state heat conduction in a circular cylinder

The solution u(r, z):

u(r, z) = (A sinhλz +B coshλz)(CJ0(λr) +DY0(λr)) (7)

We are looking for a bounded solution in 0 ≤ r ≤ a,

we must take D = 0 since Y0 → −∞ as r → 0.

Equation (7) can be written as

u(r, z) = J0(λr)(A sinh λz +B coshλz). (8)

Now applying the boundary condition (2b), we get B = 0

implying

u(r, z) = AJ0(λr) sinh λz.
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Steady-state heat conduction in a circular cylinder

Now applying the boundary condition (2a), we get 0 = AJ0(λa) sinh λz

implying

J0(λa) = 0.

Hence

λna = νn,

where νn are the zeros of J0.

The eigenvalues are given by

λn =
νn
a
. (9)

un(r, z) = AnJ0

(νn
a
r
)

sinh
(νn
a
z
)

.
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Steady-state heat conduction in a circular cylinder

By superposing all the solutions,

u(r, z) =

∞
∑

n=1

AnJ0

(νn
a
r
)

sinh
(νn
a
z
)

. (10)

The coefficient An can be obtained by using the boundary condition (2c):

f(r) =

∞
∑

n=1

AnJ0

(νn
a
r
)

sinh
(νn
a
L
)

, (11)

giving us

An =

∫ a

0 rf(r)J0
(

zn
a r

)

dr

sinh
(

νn
a L

) ∫ a

0 r
(

J0
(

zn
a r

))2
dr

. (12)
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Cooling of a sphere

The form of Laplacian in spherical coordinates (r, θ, φ):

∇2u(r, θ, φ) = urr +
2

r
ur +

1

r2
uθθ +

cotθ

r2
uθ +

1

r2 sin2 θ
uφφ.

Consider a classical problem in three dimensions:

the cooling of a sphere.

The assumed symmetries in the problem will allow us

to reduce the dimension of the problem to one spatial dimension and time only although it is a

three-dimensional transient problem.

The problem is:

Given a sphere whose initial temperature depends only on the distance from the centre (e.g., a

constant initial temperature) and whose boundary is kept at a constant temperature,

To predict the temperature at any point inside the sphere at a later time.
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Cooling of a sphere

Consider a sphere of radius a whose initial temperature is T0, a constant.

We assume that the boundary is held at zero degrees for all time t > 0.

If u is the temperature,

then in general u will depend on three spatial coordinates and time.

But a little of bit of careful observation will alow us to accept that

the temperature change can take place radially only.

Ultimately u = u(r, t).
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Cooling of a sphere

IBVP to be solved:

ut = α(urr +
2

r
ur), 0 ≤ r ≤ a, t > 0, (13)

u(a, t) = 0, t > 0, (14)

u(r, 0) = T0, 0 ≤ r ≤ a. (15)

Observe that there is an implied implicit boundary condition at r = 0:

namely that the temperature should remain bounded at all points (including r = 0) on the

sphere.

Now assume a solution of the above IBVP in the form u(r, t) = R(r)T (t)

and apply separation of variables technique.
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Cooling of a sphere

It gives us

T ′

αT
=

(

R′′

R
+

2

r

R′

R

)

= k, (16)

giving rise to the ODEs

R′′ +
2

r
R′ − kR = 0, (17)

T ′ + αkT = 0. (18)

The solution of (18) can be easily written as

T (t) = Ce−αkt. (19)

To solve equation (17),

we introduce a new function Υ (r) defined by

Υ (r) = rR(r).

Subsequently, (17) becomes

Υ
′′

(r) − kΥ (r) = 0. (20)
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Cooling of a sphere

If k < 0, say, k = −λ2 (this is the only feasible case), then we have

Υ (r) = A sinλr +B cosλr..

It gives R(r) as

R(r) =
1

r
(A sinλ r +B cosλ r) . (21)

Since (cosλr)/r is unbounded at r = 0, we must have B = 0 in order to have a bounded

solution when r → 0.

Hence, we write the solution as

u(r, t) = A
sinλr

r
e−αλ2 t. (22)
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Cooling of a sphere

Applying the boundary condition (14), sinλa = 0.

It gives us the eigenvalues

λn =
nπ

a
.

Therefore,

un(r, t) = An

sin
(

nπr
a

)

r
e−αn

2
π
2

a
2

t.

The complete solution can be written as

u(r, t) =
∞
∑

n=1

un(r, t)

=

∞
∑

n=1

An

sin
(

nπr
a

)

r
e−αn

2
π
2

a
2

t. (23)
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Cooling of a sphere

Use the initial condition (15) to find An:

T0 =

∞
∑

n=1

An

sin
(

nπr
a

)

r
.

It gives us An as

An =
2T0

a

∫ a

0

r sin
(nπr

a

)

dr. (24)

It will ultimately, upon integration, give An as

An = (−1)n+1 a
2

nπ
. (25)

Therefore, the solution can be finally written as

u(r, t) =
2T0a

2

π

∞
∑

n=1

(−1)n+1

n

sin
(

nπr
a

)

r
e−αn

2
π
2

a
2

t. (26)
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Cooling of a sphere

If the constant initial condition is replaced by some function of r, say

u(r, 0) = f(r),

then also the solution is given by (23).

But the coefficient An is then is given by

An =
2

a

∫ a

0

rf(r) sin
nπr

a
dr. (27)

In a similar manner,
the IBVP can be formulated with a non-zero constant temperature on the boundary and in that

case, the IBVP has to be split into two problems: one IBVP with zero BC and another BVP

which takes care of the non-homogeneous term in BC.
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The Maximum and Minimum Principle for Heat Equation

To begin with, we shall first prove the maximum principle for the inhomogeneous

heat equation (F 6= 0).

Theorem (The maximum principle for inhomogeneous equation)

Let R : 0 ≤ x ≤ L, 0 ≤ t ≤ T be a closed region and let u(x, t) be a solution of

ut − αuxx = F (x, t) for (x, t) ∈ R, (28)

which is continuous on R.

• If F < 0 in R, then u(x, t) attains its maximum values on t = 0, x = 0 or x = L (not in

the interior of the region or at t = T ).

• If F > 0 in R, then u(x, t) attains its minimum values on t = 0, x = 0 or x = L (not in

the interior of the region or at t = T ).

Proof. We shall show that, if a maximum or minimum occurs at an interior point

0 < x0 < L and 0 < t0 ≤ T , then we will arrive at a contradiction.
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The Maximum and Minimum Principle for Heat Equation

(Contd.)

Case I: Let F < 0. Since u(x, t) is continuous in a closed and bounded region in

R, u(x, t) must attain its maximum in R. Let (x0, t0) be the interior maximum

point. Then, we must have

uxx(x0, t0) ≤ 0, ut(x0, t0) ≥ 0. (29)

Since ux(x0, t0) = 0 = ut(x0, t0), we have

ut(x0, t0) = 0 if t0 < T.

If t0 = T , the point (x0, t0) = (x0, T ) is on the boundary of R,

then we claim that

ut(x0, t0) ≥ 0

as u may be increasing at (x0, t0).

Substituting (29) in (28), we find that the left side of the equation (28) is non-negative while

the right side is strictly negative.

This leads to a contradiction and hence, the maximum must be assumed on the initial line or

on the boundary.
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The Maximum and Minimum Principle for Heat Equation

(Contd.)

Case II: Let F > 0.

Let there be an interior minimum point (x0, t0) in R such that

uxx(x0, t0) ≥ 0, ut(x0, t0) ≤ 0. (30)

Note that the inequalities (30) are same as (29) with the signs reversed.

Again arguing as before, this leads to a contradiction, hence the minimum must be assumed on

the initial line t = 0 or on the physical boundary.

Note:

When F = 0, i.e., for a homogeneous equation, the inequalities (29) at a maximum or (30) at a

minimum do not lead to a contradiction when they are inserted into (28) as uxx and ut may

both vanish at (x0, t0).
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The Maximum and Minimum Principle for Heat Equation

(Contd.)

Theorem (The maximum principle for homogeneous equation)

Let R : 0 ≤ x ≤ L and 0 ≤ t ≤ T . Let u(x, t) be a solution of

ut = αuxx, (31)

which is continuous in the closed region R. The maximum and minimum values of u(x, t) are

attained on the initial line t = 0 or at the points on the boundary x = 0 or x = L.

Proof.

Let us introduce the auxiliary function v(x, t) as

v(x, t) = u(x, t) + εx2, (32)

where ε > 0 is a constant and u satisfies (31).

Note that v(x, t) is continuous in R and hence it has a maximum at some point (x1, t1) in the

region R.
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The Maximum and Minimum Principle for Heat Equation

(Contd.)

Assume that (x1, t1) is an interior point with 0 < x1 < L and 0 < t1 ≤ T .

Then we find that

vt(x1, t1) ≥ 0, vxx(x1, t1) ≤ 0. (33)

Since u satisfies (31), we have

vt − αvxx = ut − αuxx − 2αε = −2αε < 0. (34)

Substituting (33) into (31) and using (34 ) now leads to

0 ≤ vt − αvxx < 0,

which is a contradiction since the left side is non-negative and the right side is strictly negative.

Therefore, v(x, t) assumes its maximum on the initial line or on the boundary since v satisfies

(28) with F = −2αε < 0.
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The Maximum and Minimum Principle for Heat Equation

(Contd.)

Let

M = max{u(x, t)} on t = 0, x = 0, and x = L,

i.e., M is the maximum value of u on the initial line and boundary lines.

Then

v(x, t) = u(x, t) + εx2 ≤ M + εL2, for 0 ≤ x ≤ L, 0 ≤ t ≤ T. (35)

Since v has its maximum on t = 0, x = 0, or x = L, we obtain

u(x, t) = v(x, t)− εx2 ≤ v(x, t) ≤ M + εL2. (36)

Since ε is arbitrary, letting ε → 0, we conclude that

u(x, t) ≤ M for all (x, t) ∈ R, (37)

and this completes the proof.
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The Maximum and Minimum Principle for Heat Equation

(Contd.)

Remarks.

1. The minimum principle for the heat equation can be obtained by replacing the function

u(x, t) by −u(x, t), where u(x, t) is a solution of (31). Clearly, −u is also a solution of (31) and

the maximum values of −u correspond to the minimum values of u. Since −u satisfies the

maximum principle, we conclude that u assumes its minimum values on the initial line or on the

boundary lines.

2. In geometrical sense, the maximum principle states that, if a solution of the problem (31) is

graphed in the xtu-space, then the surface u = u(x, t) achieves its maximum height above one

of the three sides x = 0, x = L, t = 0 of the rectangle 0 ≤ x ≤ L, 0 ≤ t ≤ T .

3. From a physical perspective, the maximum principle states that the temperature, at any

point x on the rod at any time t (0 ≤ t ≤ T ), is less than the maximum of the initial

temperature distribution or the maximum of the temperatures prescribed at the ends during the

time interval [0, T ].
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Uniqueness and continuous dependence

As a consequence of the maximum principle, we can show that the heat flow

problem has a unique solution and depends continuously on the given initial and

boundary data.

Theorem (Uniqueness result)

Let u1(x, t) and u2(x, t) be solutions of the following problem

PDE: ut = αuxx, 0 < x < L, t > 0,

BC: u(0, t) = g(t), u(L, t) = h(t), (38)

IC: u(x, 0) = f(x),

where f(x), g(t) and h(t) are given functions. Then u1(x, t) = u2(x, t), for all 0 ≤ x ≤ L and

t ≥ 0.
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Uniqueness and continuous dependence (Contd.)

Proof.

Let u1(x, t) and u2(x, t) be two solutions of (38). Set w(x, t) = u1(x, t) − u2(x, t).

Then w satisfies

wt = αwxx, 0 < x < L, t > 0,

w(0, t) = 0, w(L, t) = 0,

w(x, 0) = 0.

By the maximum principle, we must have

w(x, t) ≤ 0 =⇒ u1(x, t) ≤ u2(x, t), for all 0 ≤ x ≤ L, t ≥ 0.

A similar argument with w̄ = u2 − u1 yields

u2(x, t) ≤ u1(x, t) for all 0 ≤ x ≤ L, t ≥ 0.

Therefore, we have

u1(x, t) = u2(x, t) for all 0 ≤ x ≤ L, t ≥ 0,

and this completes the proof.
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Continuous dependence on the given IC and BC

Theorem (Continuous dependence on the given IC and BC)

Let u1(x, t) and u2(x, t), respectively, be solutions of the problems

ut = αuxx; ut = αuxx (39)

u(0, t) = g1(t) u(L, t) = h1(t); u(0, t) = g2(t) u(L, t) = h2(t)

u(x, 0) = f1(x); u(x, 0) = f2(x),

in the region 0 ≤ x ≤ L, 0 ≥ t ≤ T . If

|f1(x) − f2(x)| ≤ ε for all x, 0 ≤ x ≤ L,

and

|g1(t)− g2(t)| ≤ ε and |h1(t)− h2(t)| ≤ ε for all t, 0 ≤ t ≤ T,

for some ε ≥ 0, then we have

|u1(x, t)− u2(x, t)| ≤ ε for all x and t,where 0 ≤ x ≤ L, 0 ≤ t ≤ T.
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Continuous dependence on the given IC and BC (Contd.)

Proof.

Let v(x, t) = u1(x, t)− u2(x, t). Then vt = αvxx and we obtain

|v(x, 0)| = |f1(x)− f2(x)| ≤ ε, 0 ≤ x ≤ L,

|v(0, t)| = |g1(t)− g2(t)| ≤ ε, 0 ≤ t ≤ T,

|v(l, t)| = |h1(t)− h2(t)| ≤ ε, 0 ≤ t ≤ T.

Note that the maximum of v on t = 0 (0 ≤ x ≤ L) and x = 0 and x = l (0 ≤ t ≤ T ) is not

greater than ε. The minimum of v on these boundary lines is not less than −ε.

Hence, the maximum/minimum principle yields

−ε ≤ v(x, t) ≤ ε =⇒ |u1(x, t)− u2(x, t)| = |v(x, t)| ≤ ε.
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Continuous dependence on the given IC and BC (Contd.)

Remarks.

• We observe that when ε = 0, the problems in (39) are identical. We conclude that

|u1(x, t)− u2(x, t)| ≤ 0 (i.e., u1 = u2). This proves the uniqueness result.

• Suppose a certain initial/boundary value problem has a unique solution. Then a small

change in the initial and/or boundary conditions yields a small change in the solutions.

For the inhomogeneous equation (28), we have seen that the maximum or

minimum values must be attained either on the initial line or the boundary lines

and that they cannot be assumed in the interior.

The following result is known as a strong maximum or minimum principle.

Theorem (Strong maximum principle)

Let u(x, t) be a solution of the heat equation in the rectangle R : 0 ≤ x ≤ L, 0 ≤ t ≤ T . If

u(x, t) achieves its maximum at (x∗, T ), where 0 < x∗ < L, then u must be constant in R.
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Time-Independent Non-homogeneous BC

We now turn to the situation where the BC are not both homogeneous, but are

independent of time variable t.

The method of solution consists of the following steps:

• Step 1: Find a particular solution of the PDE and BC.

• Step 2: Find the solution of a related problem with homogeneous BC. Then, add this

solution to that particular solution obtained in Step 1.

The procedure is illustrated in the following example:

PDE: ut = αuxx, 0 ≤ x ≤ L, t > 0, (40)

BC: u(0, t) = a, u(L, t) = b, t > 0, (41)

IC: u(x, 0) = f(x), 0 ≤ x ≤ L, (42)

where a and b are arbitrary constants and f(x) is a given function.
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Time-Independent Non-homogeneous BC (Contd.)

Solution.

Seek a particular solution up(x) of the form up(x) = cx+ d, where c and d are to be chosen so

that the BC are satisfied:

a = up(0) = c · 0 + d = d,

b = up(L) = cL+ d = cL+ a.

=⇒ d = a and c = (b− a)/L.

Thus

up(x) = (b− a)x/L+ a

solves the PDE with the BC satisfied.

Consider the related homogeneous problem (i.e., with homogeneous PDE and BC)

PDE: vt = αvxx, 0 ≤ x ≤ L, t > 0,

BC: v(0, t) = 0, v(L, t) = 0, t > 0, (43)

IC: v(x, 0) = f(x)− up(x), 0 ≤ x ≤ L.
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Time-Independent Non-homogeneous BC (Contd.)

If f(x)− up(x) =

∞
∑

n=1

cn sin(nπx/L), then its solution is given by

v(x, t) =

∞
∑

n=1

cne
−(nπ/l)2αt sin(nπx/L).

Now, set u(x, t) = v(x, t) + up(x).

Then it is easy to verify that u(x, t) solves (40). Indeed, u(x, t) solves (40) by the superposition

principle. Further, we have

BC: u(0, t) = v(0, t) + up(0) = 0 + a = a,

u(L, t) = v(L, t) + up(L) = 0 + b = b,

IC: u(x, 0) = v(x, 0) + up(x) = f(x)− up(x) + up(x) = f(x).
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Time-Independent Non-homogeneous BC (Contd.)

Remarks:

• It is necessary to subtract up(x) from f(x) to form the initial condition for the related

problem (43) so that the initial condition (42) is satisfied.

• Since any particular solution will do, for simplicity one should consider a particular solution

of the form cx+ d, and find the constants, using the BC. The reason is that the formula

only applies to the BC of (41). For other BC, we obtain other particular solution.

For example, If ux(0, t) = a, u(L, t) = b, then up(x) = a(x− L) + b.
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Time-Independent Non-homogeneous BC (Contd.)

Example

PDE: ut = 2uxx, 0 ≤ x ≤ 1, t > 0, (44)

BC: ux(0, t) = 1, u(1, t) = −1, t > 0, (45)

IC: u(x, 0) = x+ cos2(3πx/4)− 5/2. (46)

Solution.

Take up(x) = cx+ d. The first BC ux(0, t) = 1 yields c = 1, while up(1) = 1 + d yields d = −2

by the second BC. Thus, up(x) = x− 2.

The related homogeneous problem is

vt = 2vxx, 0 ≤ x ≤ 1, t > 0,

vx(0, t) = 0, v(1, t) = 0, t > 0,

v(x, 0) = [x+ cos2(3πx/4)− 5/2]− (x− 2)

=
1

2
+

1

2
cos(3πx/2)− 5/2 + 2 =

1

2
cos(3πx/2).
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Time-Independent Non-homogeneous BC (Contd.)

It is easy to obtain the solution of the related homogeneous problem as

v(x, t) = e−9π2t/2[
1

2
cos(3πx/2)].

From the above examples, we notice that the particular solution is time independent, or in

steady-state.

Note:

Any steady-state solution of the heat equation ut = αuxx is of the form cx+ d.

The solutions u(x, t) are sums of a steady-state particular solution of the PDE and BC and the

solution v(x, t) of the related homogeneous problem which is transient in the sense that

v(x, t) → 0 as t → ∞.
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Time-Independent Non-homogeneous BC (Contd.)

Thus

u(x, t) = up(x) + v(x, t) → up(x), as t → ∞.

(steady-state solution) (transient solution)

That is, the solution u approaches the steady-state solution as t → ∞.

However, for some types of BC, there are no steady-state particular solutions.

Example

Consider the problem

PDE: ut = αuxx, 0 ≤ x ≤ L, t > 0, (47)

BC: ux(0, t) = a, ux(l, t) = b, (48)

IC: u(x, 0) = f(x), (49)

where a and b are constants, and f(x) is a given function.
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Time-Independent Non-homogeneous BC (Contd.)

Solution.

Let up(x) = cx+ d. Then, using BC, we obtain c = a and c = b, which is impossible unless

a = b.

NOTE:

Observe that the boundary conditions state that heat is being drained out of the end x = 0 at a

rate ux(0, t) = a and heat is flowing into the end x = l at a rate ux(l, t) = b. If b > a, then the

heat energy is being added to the rod at a constant rate. If b < a, the rod loses heat at a

constant rate. Thus, we cannot expect a steady-state solution of the PDE and BC, unless a = b.
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