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Steady state heat conduction: Laplace’s equation

Laplace’s equation in two or three dimensions

usually arises in two types of physical problems

1. Steady state heat conduction.

2. As equation of continuity for incompressible potential flow.

However, here we will emphasize only

on the first type

Steady state solution here means

the solution for large time.
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Laplace’s equation: Physical Meaning

Laplace’s equation in two dimensions and three dimensions, are , respectively,

given by

uxx + uyy = 0, (1)

uxx + uyy + uzz = 0. (2)

The above equations can be obtained from the two-dimensional and three-dimensional transient

heat conduction equations when u does not depend on t.

Hence Laplace’s equation models

steady heat flow in a region where the temperature is fixed on the boundary.

Let us take up Laplace’s equation in two-dimensions and examine

what its tells us from a physical point of view.
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Laplace’s equation: Physical Meaning

Figure : Laplace’s equation in a rectangular region

Let (x, y) be some point in the region where heat is flowing.

Let h be some small distance.
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Laplace’s equation: Physical Meaning

By Taylor’s theorem for two variables,

u(x− h, y) = u(x, y)− hux(x, y) +
1

2
h2uxx(x, y)−

1

6
h3uxxx(x, y) +O(h4), (3)

where

O(h4) denotes the remaining terms (the error term), which are of at least power 4 in h.

Similarly

u(x+ h, y) = u(x, y) + hux(x, y) +
1

2
h2uxx(x, y) +

1

6
h3uxxx(x, y) +O(h4). (4)

Adding equations (3) and (4) and solving for uxx:

uxx(x, y) =
u(x− h, y)− 2u(x, y) + u(x+ h, y)

h2
+O(h2), (5)

It is a difference-quotient approximation to the second partial derivative uxx at

(x, y), and the error is proportional to h2.
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Laplace’s equation: Physical Meaning

Now incrementing y instead of x, the approximation for uyy:

uyy(x, y) =
u(x, y − h)− 2u(x, y) + u(x, y + h)

h2
+O(h2), (6)

(5) and (6) ⇒

Laplace’s equation at (x, y) can be approximated by the equation

u(x− h, y)− 2u(x, y) + u(x+ h, y)

h2
+

u(x, y − h)− 2u(x, y) + u(x, y + h)

h2
+O(h2) = 0. (7)

Solving for u(x, y) gives, upon neglecting the small-order terms,

u(x, y) ≈
1

4
[u(x− h, y) + u(x+ h, y) + u(x, y − h) + u(x, y + h)]. (8)

Equation (8) states, physically,

that the temperature at a point (x, y) is approximately (since we neglected small terms) the

average of the temperatures at four nearby points (x− h, y), (x+ h, y), (x, y − h), (x, y + h).
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Laplace’s equation: Physical Meaning

Observe that the temperature at (x, y)

cannot exceed the temperatures at all the neighbouring points;

so a maximum cannot occur at (x, y).

Similarly, the temperature at (x, y) cannot

be less than the temperatures at all the neighbouring points;

so a minimum also cannot occur at (x, y).

This important physical interpretation can be extended to a circle.
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Laplace’s equation: Physical Meaning

If u = u(x, y) satisfies Laplace’s equation at a point P0 : (x0, y0) in a region,

then the temperature at P0 is the average value of the temperature on any circle CR(P0) of

radius R centered at P0 lying in the region:

u(x0, y0) =
1

2πR

∫

CR(P0)

u(x, y)ds.

The integral here is a line integral over the curve CR(P0).

This result can be generalized to three dimensions:

The steady-state temperature at a point is the average of the temperatures over the surface of

any sphere centred at that point.
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Laplace’s equation: Physical Meaning

If the value of u at a point is the average of the values on any circle about that

point,

then the value of u at that point cannot exceed every value of u on any given circle.

Intuitively,

this seems to imply that a function u satisfying Laplace’s equation in a given domain cannot

have a local maximum at a point inside that domain;

the maximum must therefore occur on the boundary of the domain.

Indeed, this is true, and
the result is called the maximum principle.
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Maximum Principle

Theorem: Let u(x, y) satisfy Laplace’s equation in D, an open, bounded, connected region in

the plane; and let u be continuous on the closed domain D ∪ ∂D consisting of D and its

boundary. If u is not a constant function, then the maximum and minimum values of u are

attained on the boundary of D and nowhere inside D.

. �

This is called maximum principle theorem for Laplace’s equation.
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Steady state heat conduction in two dimensions

We consider steady state heat conduction

in a two-dimensional rectangular region.

To be specific,

consider the equilibrium temperature inside a rectangle 0 ≤ x ≤ a, 0 ≤ y ≤ b.

Here

the temperature is a prescribed function of position on the boundary.

In general the Dirichlet BVP will be like

uxx + uyy = 0, 0 ≤ x ≤ a, 0 ≤ y ≤ b

u(0, y) = g1(y), u(a, y) = g2(y), 0 ≤ y ≤ b

u(x, 0) = f1(x), u(x, b) = f2(x), 0 ≤ x ≤ a.
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Steady state heat conduction in two dimensions

where

f1(x), f2(x), g1(y), g2(y) are given functions.

Though the equation is linear and homogenous,

the BCs are not homogenous.

Hence
the BVP is needed to be split into four BVPs with each containing one non-homogenous BC.

Take

u = u1 + u2 + u3 + u4, 0 ≤ x ≤ a, 0 ≤ y ≤ b.
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Steady state heat conduction in two dimensions

BVP I and BVP II:

u1,xx + u1,yy = 0; u2,xx + u2,yy = 0, 0 ≤ x ≤ a, 0 ≤ y ≤ b;

u1(0, y) = 0, 0 ≤ y ≤ b; u2(0, y) = 0, 0 ≤ y ≤ b;

u1(a, y) = 0, 0 ≤ y ≤ b; u2(a, y) = 0, 0 ≤ y ≤ b;

u1(x, 0) = f1(x), 0 ≤ x ≤ a; u2(x, 0) = 0, 0 ≤ x ≤ a;

u1(x, b) = 0, 0 ≤ x ≤ a; u2(x, b) = f2(x), 0 ≤ x ≤ a;

BVP III and BVP IV:

u3,xx + u3,yy = 0; u4,xx + u4,yy = 0, 0 ≤ x ≤ a, 0 ≤ y ≤ b;

u3(0, y) = g1(y), 0 ≤ y ≤ b; u4(0, y) = 0, 0 ≤ y ≤ b;

u3(a, y) = 0, 0 ≤ y ≤ b; u4(a, y) = g2(y), 0 ≤ y ≤ b;

u3(x, 0) = 0, 0 ≤ x ≤ a; u4(x, 0) = 0, 0 ≤ x ≤ a;

u3(x, b) = 0, 0 ≤ x ≤ a; u4(x, b) = 0, 0 ≤ x ≤ a.

We will consider only one of them.......take u1 = u for convenience
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Steady state heat conduction in two dimensions

Consider the steady state heat conduction in a rectangular region

0 ≤ x ≤ a, 0 ≤ y ≤ b

where three boundaries along x = 0, x = a, y = b are kept at 00C

while

the temperature along the boundary y = 0 is f(x).

To find the temperature at any point (x, y).
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Steady state heat conduction in two dimensions

BVP will consist of the following:

The governing equation is two-dimensional Laplace’s equation:

uxx + uyy = 0, 0 ≤ x ≤ a, 0 ≤ y ≤ b. (9)

The boundary conditions are:

u(0, y) = 0, 0 ≤ y ≤ b, (10a)

u(a, y) = 0, 0 ≤ y ≤ b, (10b)

u(x, 0) = f(x), 0 ≤ x ≤ a, (10c)

u(x, b) = 0, 0 ≤ x ≤ a. (10d)

It being a pure BVP and the solution being a function of x and y,

obviously we will not have any initial conditions.

Hence
This problem is called a steady-state problem.
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Steady state heat conduction in two dimensions

Assume a solution of the form:

u(x, y) = X(x)Y (y). (11)

Using (11) in (9)

X ′′

X
+

Y ′′

Y
= 0

On separating the variables x and y,

X ′′

X
= −

Y ′′

Y
= k(say).

Giving us

X ′′
− kX = 0, (12)

Y ′′ + kY = 0. (13)

The zero and positive values of k will not give rise to solutions conforming to the boundary

conditions.
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Steady state heat conduction in two dimensions

We consider only the negative values of k, say − λ2, to write the equations (12)

and (13) as

X ′′ + λ2X = 0, (14)

Y ′′
− λ2Y = 0, (15)

so that the solution u(x, y) can be written as

u(x, y) = (A cosλx +B sinλx)(C coshλy +D sinhλy). (16)

Using boundary condition (10a)

A = 0.

Using boundary condition (10b),

λn =
nπ

a
, n = 1, 2, 3, . . .

⇒

un(x, y) = sin
nπx

a

(

An cosh
nπy

a
+Bn sinh

nπy

a

)

.
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Steady state heat conduction in two dimensions

Using boundary condition (10d)

Bn = −
cosh nπb

a

sinh nπb
a

An

so that the solution u(x, y) can be written as

u(x, y) =

∞
∑

n=1

un(x, y) =

∞
∑

n=1

An sin
nπx

a

(

cosh
nπy

a
−

cosh nπb
a

sinh nπb
a

sinh
nπy

a

)

=
∞
∑

n=1

An sin
nπx

a

sinh nπ(b−y)
a

sinh nπb
a

(17)

Remaining boundary condition (10c) can be used to evaluate the coefficients An:

f(x) =
∞
∑

n=1

An sin
nπx

a
.

An is obtained as

An =
2

a

∫ a

0

f(x) sin
nπx

a
dx. (18)

The solution to the BVP described by equations (9)-(10) is given by

(17) with An given by (18).
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Steady state heat conduction in two dimensions

Similarly we can find the other solutions u2, u3 and u4 and

write the total solution as u = u1 + u2 + u3 + u4.

This problem with Dirichlet conditions

along all boundaries is called a Dirichlet problem for a rectangle.

The problem with Neumann conditions

along all boundaries is called a Neumann problem for a rectangle.

This new problem can be solved by writing the boundary conditions as

ux(0, y) = 0, (19a)

ux(a, y) = 0, (19b)

uy(x, 0) = f(x), (19c)

uy(x, b) = 0. (19d)

TRY to solve it yourself.
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