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Heat conduction problem in a thin rod

Consider following heat conduction equation in a rod (0, L)

The initial condition for 0 < z < L:

In practice, temperature u(z, t) satisfies certain boundary conditions such as:

(a) Dirichlet Condition: u(0,t) = ug, w(L,t) =ur, t >0
(b) Neumann Condition: u;(0,t) = a1, ug(L,t) =, t >0,
(c) Robin Condition: uy;(0,¢) + aqu(0,t) = aa, ux(L,t) + aru(L,t) = Ba.

Physically, u, denotes heat flux. So, u,;(0,t) = 0 means

the left end of the rod is insulated, i.e., heat transfer through that point is zero.
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Heat conduction problem with flux conditions

Consider the IBVP consisting of the following:

ug(0,t) =
u(L,t) =

The initial condition for 0 < x < L:

The boundary conditions (4) tell us that
the left end of the rod is insulated and the right end is kept at zero degrees.
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Heat conduction problem with flux conditions

Using the separation of variable technique by assuming a solution of the form
= , the PDE (3) is converted to the following ODEs:

Taking k = —\?, the above equations become

X"+ XX = 0, (6)
T + X2l = 0. )
Giving us the solutions:
X(xz) = Acos(A\z)+ Bsin(Az), (8)
T(t) = Ce ¥t (9)
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Heat conduction problem with flux conditions

The solution:

u(z,t) = [Acos(A\z) + B sin(Ax)]Ce_a)‘zt. (10)

To use the boundary condition (4a), we have to differentiate (10) w.r.t. = to get |

uy = A[—Asin(A\z) + B cos(Az)]Ce .

Using boundary condition (4a)

B = 0 and hence

u(z,t) = Acos()\z)efa)‘zt. (12)

The boundary condition (4b) will give the eigenvalues as

2n+1\ 7w
/\n:< 5 )E,n:O,l,Q,B,....
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Heat conduction problem with flux conditions

The solution to the IBVP will be given by

= = n 2 p2 n T
u(z,t) = Zun(x,t) = ZA" exp |:704 <2 2+ 1) ﬁt} cos (%) ,
n=0 n=0
(13)

where A,, can be obtained from IC (5):

= 2 D)7
o(x) = Z A, cos (W;%)

n=0

2 (L @2n 4+ )7z
Anfz/o f(z) cos (T) dr, n=0,1,2,3,... (14)

Note that here n = 0 also contributes to the solution.

In other words, we can say that the eigenvalue )\, corresponding to n = 0, also

contributes.
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Heat conduction problem with different flux conditions at

ends

Note the difference in solution
when Dirichlet condition at both ends of the rod are changed to one Neumann (at
x = 0) and one Dirichlet (at z = L) conditions

We may have two other combinations of pairs of conditions, viz.,

3. Dirichlet condition at z =0
and Neumann condition at x = L

4. Neumann condition at both ends x = 0 and x = L.

In other words,

We can have four types of problems corresponding to a pair-wise end conditions.
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Heat conduction problems with different conditions at ends

Problem |

Governing equation: u; = qtug,, 0 <z < L, t >0,

Boundary conditions: w(0,t) = 0 = u(L,t), Initial Condition: u(z,0) = ¢(z).

Solution is

= . (nTxN  _gnir?
u(z,t) = ZA” sin (T) e ‘1z 7,
n=1

.

Ay, = %/OL ¢(z) sin (mgx) dx.
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Heat conduction problems with different conditions at ends

Problem I

Governing equation: u; = auy,, 0 <z < L, t >0,
Boundary conditions: u;(0,t) = 0 = u(L, t), Initial Condition: u(z,0) = ¢(x).

p

The solution is

co 2 2
u(z,t) = ZA" cos <W> exp [—a <2n_+1) W—t] )
n=0

2

4

2 (L 2n +1
A":f/o gb(x)cos(%)dw.
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Heat conduction problems with different conditions at ends

Problem |I1
Governing equation: u; = auy,, 0 <z < L, t >0,
Boundary conditions: u(0,t) = 0 = u,(L,t), Initial Condition: u(z,0) = ¢(x).

Solution is

5 (Y o L (1Y

with

A, = %/0 #(z) sin (W) da.
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Heat conduction problems with different conditions at ends

Problem IV

Governing equation u; = qtiz,,, 0<x < L, t >0,

Boundary conditions: u;(0,%) = 0 = uy(L,t), Initial Condition: u(z,0) = ¢(x).

4

The solution is

= nNIEr\ _onir?
u(z,t) = ZA” cos (T) ez v
n=1

.

2 L
A, = E/0 () cos("T0)do.
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Heat conduction problems with radiation conditions at one

end

Consider a problem related to radiation condition.

Take up the following IBVP:

Ut = QUgzgz, 0 <z < L, t > 0. (15)
u(0,t) = 0, (16a)
ug(L,t) + hu(L,t) = 0,t>0, (16b)
where h is a constant. )
u(z,0) = ¢(z), 0 <z < L. (17)

4

MA542(2022) 21/04/2022 12 /22



Heat conduction problems with radiation conditions at one

end

Solution can be written as

u(z,t) = [Asin(Az) + B cos(Ax)]Ce ¥, (18)

Using boundary condition (16a)

we get B = 0.

Using boundary condition (16b),

[Ahsin(AL) + A cos(AL)|Ce**t = 0

ultimately giving us a transcendental equation for A as

A/h = —tan(AL). (19)

Equation (19) cannot be solved analytically
but the graphs of the functions A\/h and — tan AL versus A show that the equation has

infinitely many positive solutions A1, Ag, ...
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Heat conduction problems with radiation conditions at one

end

A
Y
Yy = tan Z
0 Z
»
z4 I
% ﬁﬂ)

Figure : Graphical representation of the eigenvalues
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Heat conduction problems with radiation conditions at one

end

These values A, are the eigenvalues.

Up(z,t) = Ap, sin(/\n:c)e_‘“at. (20) ‘

Hence the solution:

o0
u(z,t) = Z Ay sin(Apz) et
n=1

S, i i\

A, are solutions of (19).

The initial condition will give us A,, as

A, = %/OL o(z) sin(A\,x) dz.
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Non-Homogeneous Heat Equation: Duhamel’s Principle

x,t) such that (when a source is included)

Ut — QUgy = f(xvt)v (xat) € (OaL) X (0,00), (22)
with BCs u(0,¢t) =0, w(L,t) =0, ¢ >0, and (23)
with IC u(z,0) =0, z € [0,L]. (24)
Then the solution u is given by
¢
u(z,t) = / v(x,t —7,7)dT. (25)
0

_
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Duhamel'’s Principle (Contd.)

Here, v is the solution of the problem

UVt — QUgg = 07 (Ivt) € (07L) X (0700)7 (26)

with BCs v(0,t) =0, v(L,t) =0, t >0 and (27)

with IC v(z,0) = f(z,s), s> 0. (28)
for some real parameter s > 0.

Note that the solution v of the above problem depends on z, t and s.

Thus, v = v(x,t, s). Accordingly, we can modify the BCs and IC as

BCs: v(0,t,s) =0, v(L,t,s)=0,¢t>0, s>0, and
IC: v(z,0,s) = f(z,s), s>0.
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Leibniz Rule: Differentiation under the sign of integration

Use Leibniz rule on

to have

¢ it
/ ve(z,t — 7, 7)dT +v(x,t —t,t) % (l—t —v(z,t—0,0) x 0
0 a

rt

t
/ v(z,t — 7, 7)dT + v(z,0,t) :/ veds + f(z,1).

0 0
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Leibniz Rule: Differentiation under the sign of
integration(contd.)

Similarly,

t 1 t
Uge (T, 1) = / Vg ds = —/ veds.
0 @ Jo

Combining above two equations, we have

t
Up = / vds + f(x,t) = qug, + f(z,t).
Jo

Further, u given by
i
u(z,t) = / v(x,t — 7, 7)dT
0

satisfies both initial and boundary conditions.
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Example

Solve

Up — Uy = tsine, 0 < x <,
u(0,t) =0, wu(m,t)=0, t>0,
u(z,0) = 0.

Solution: We first solve the related problem for v(z, ¢, s)

V=g =0, 0 <z <,

v(0,t,8) =0, v(m,t,s)=0, t>0,s>0,

v(z,0,s) = F(z,s) = ssinz.
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From method of separation of variables, for fixed s, we obtain

v(z,t,s) = ZB sinnx e ”Qt, (31)

L

B, = F(z,s)sinnxdx

s
s sin x sin nadx.

SRR

J
J

Hence,

Bi=s & B, =0 forn# 1. (32)

MA542(2022) 21/04/2022 21/ 22



For any s > 0, we obtain

v(z,t,s) = se”tsinx. (33)

v(z,t —7,7) = re" T sinz.

Hence, due to Duhamel’s principle, u(x,t) is given by

¢ t
u(z,t) = /v(x,th,T)de/ re~ =) sin zdr
0 0

¢
= eftsinx/ Te'dr.
0
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