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Heat conduction problem in a thin rod

Consider following heat conduction equation in a rod (0, L)

ut = αuxx, 0 < x < L, t > 0. (1)

The initial condition for 0 ≤ x ≤ L:

u(x, 0) = f(x). (2)

In practice, temperature u(x, t) satisfies certain boundary conditions such as:

(a) Dirichlet Condition: u(0, t) = u0, u(L, t) = uL, t > 0

(b) Neumann Condition: ux(0, t) = α1, ux(L, t) = β1, t > 0,

(c) Robin Condition: ux(0, t) + a0u(0, t) = α2, ux(L, t) + aLu(L, t) = β2.

Physically, ux denotes heat flux. So, ux(0, t) = 0 means

the left end of the rod is insulated, i.e., heat transfer through that point is zero.
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Heat conduction problem with flux conditions

Consider the IBVP consisting of the following:

ut = αuxx, 0 < x < L, t > 0, (3)

The boundary conditions for all t > 0:

ux(0, t) = 0, (4a)

u(L, t) = 0. (4b)

The initial condition for 0 ≤ x ≤ L:

u(x, 0) = φ(x). (5)

The boundary conditions (4) tell us that

the left end of the rod is insulated and the right end is kept at zero degrees.
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Heat conduction problem with flux conditions

Using the separation of variable technique by assuming a solution of the form

u(x, t) = X(x)T (t), the PDE (3) is converted to the following ODEs:

X ′′ − kX = 0,

T ′ − kαT = 0.

Taking k = −λ2, the above equations become

X ′′ + λ2X = 0, (6)

T ′ + λ2αT = 0. (7)

Giving us the solutions:

X(x) = A cos(λx) +B sin(λx), (8)

T (t) = Ce−αλ
2
t. (9)
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Heat conduction problem with flux conditions

The solution:

u(x, t) = [A cos(λx) +B sin(λx)]Ce−αλ
2
t. (10)

To use the boundary condition (4a), we have to differentiate (10) w.r.t. x to get

ux = λ[−A sin(λx) +B cos(λx)]Ce−αλ
2
t. (11)

Using boundary condition (4a)

B = 0 and hence

u(x, t) = A cos(λx)e−αλ2t. (12)

The boundary condition (4b) will give the eigenvalues as

λn =

(

2n + 1

2

)

π

L
, n = 0, 1, 2, 3, . . . .
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Heat conduction problem with flux conditions

The solution to the IBVP will be given by

u(x, t) =

∞
∑

n=0

un(x, t) =

∞
∑

n=0

An exp

[

−α

(

2n+ 1

2

)2 π2

L2
t

]

cos

(

(2n+ 1)πx

2L

)

,

(13)

where An can be obtained from IC (5):

φ(x) =
∞
∑

n=0

An cos

(

(2n+ 1)πx

2L

)

as

An =
2

L

∫

L

0
f(x) cos

(

(2n + 1)πx

2L

)

dx, n = 0, 1, 2, 3, . . . (14)

Note that here n = 0 also contributes to the solution.

In other words, we can say that the eigenvalue λ0, corresponding to n = 0, also

contributes.
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Heat conduction problem with different flux conditions at

ends

Note the difference in solution

when Dirichlet condition at both ends of the rod are changed to one Neumann (at

x = 0) and one Dirichlet (at x = L) conditions

We may have two other combinations of pairs of conditions, viz.,

3. Dirichlet condition at x = 0

and Neumann condition at x = L

4. Neumann condition at both ends x = 0 and x = L.

In other words,

We can have four types of problems corresponding to a pair-wise end conditions.
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Heat conduction problems with different conditions at ends

Problem I

Governing equation: ut = αuxx, 0 < x < L, t > 0,

Boundary conditions: u(0, t) = 0 = u(L, t), Initial Condition: u(x, 0) = φ(x).

Solution is

u(x, t) =

∞
∑

n=1

An sin
(nπx

L

)

e−α
n
2
π
2

L2
t,

with

An =
2

L

∫

L

0
φ(x) sin

(nπx

L

)

dx.
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Heat conduction problems with different conditions at ends

Problem II

Governing equation: ut = αuxx, 0 < x < L, t > 0,

Boundary conditions: ux(0, t) = 0 = u(L, t), Initial Condition: u(x, 0) = φ(x).

The solution is

u(x, t) =

∞
∑

n=0

An cos

(

(2n+ 1)πx

2L

)

exp

[

−α

(

2n+ 1

2

)2 π2

L2
t

]

,

with

An =
2

L

∫

L

0
φ(x) cos(

(2n + 1)πx

2L
)dx.
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Heat conduction problems with different conditions at ends

Problem III

Governing equation: ut = αuxx, 0 < x < L, t > 0,

Boundary conditions: u(0, t) = 0 = ux(L, t), Initial Condition: u(x, 0) = φ(x).

Solution is

u(x, t) =

∞
∑

n=0

An sin

(

(2n+ 1)πx

2L

)

exp

[

−α

(

2n+ 1

2

)2 π2

L2
t

]

,

with

An =
2

L

∫

L

0
φ(x) sin

(

(2n + 1)πx

2L

)

dx.
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Heat conduction problems with different conditions at ends

Problem IV

Governing equation ut = αuxx, , 0 < x < L, t > 0,

Boundary conditions: ux(0, t) = 0 = ux(L, t), Initial Condition: u(x, 0) = φ(x).

The solution is

u(x, t) =

∞
∑

n=1

An cos
(nπx

L

)

e−α
n
2
π
2

L2
t,

with

An =
2

L

∫

L

0
φ(x) cos(

nπx

L
)dx.
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Heat conduction problems with radiation conditions at one

end

Consider a problem related to radiation condition.

Take up the following IBVP:

Governing equation:

ut = αuxx, 0 < x < L, t > 0. (15)

Boundary Conditions:

u(0, t) = 0, (16a)

ux(L, t) + hu(L, t) = 0, t > 0, (16b)

where h is a constant.

Initial condition:

u(x, 0) = φ(x), 0 ≤ x ≤ L. (17)
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Heat conduction problems with radiation conditions at one

end

Solution can be written as

u(x, t) = [A sin(λx) +B cos(λx)]Ce−αλ2t. (18)

Using boundary condition (16a)

we get B = 0.

Using boundary condition (16b),

[Ah sin(λL) + λA cos(λL)]Ce−αλ2t = 0

ultimately giving us a transcendental equation for λ as

λ/h = − tan(λL). (19)

Equation (19) cannot be solved analytically

but the graphs of the functions λ/h and − tanλL versus λ show that the equation has

infinitely many positive solutions λ1, λ2, . . .
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Heat conduction problems with radiation conditions at one

end

Figure : Graphical representation of the eigenvalues
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Heat conduction problems with radiation conditions at one

end

These values λn are the eigenvalues.

un(x, t) = An sin(λnx)e
−αλ2

nt. (20)

Hence the solution:

u(x, t) =

∞
∑

n=1

An sin(λnx) e
−αλ2

nt, (21)

where

λn are solutions of (19).

The initial condition will give us An as

An =
2

L

∫

L

0
φ(x) sin(λnx) dx.
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Non-Homogeneous Heat Equation: Duhamel’s Principle

Find temperature u(x, t) such that (when a source is included)

ut − αuxx = f(x, t), (x, t) ∈ (0, L) × (0,∞), (22)

with BCs u(0, t) = 0, u(L, t) = 0, t > 0, and (23)

with IC u(x, 0) = 0, x ∈ [0, L]. (24)

Then the solution u is given by

u(x, t) =

∫

t

0
v(x, t− τ, τ)dτ. (25)

What is v?
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Duhamel’s Principle (Contd.)

Here, v is the solution of the problem

vt − αvxx = 0, (x, t) ∈ (0, L) × (0,∞), (26)

with BCs v(0, t) = 0, v(L, t) = 0, t > 0 and (27)

with IC v(x, 0) = f(x, s), s > 0. (28)

for some real parameter s > 0.

Note that the solution v of the above problem depends on x, t and s.

Thus, v = v(x, t, s). Accordingly, we can modify the BCs and IC as

BCs: v(0, t, s) = 0, v(L, t, s) = 0, t > 0, s > 0, and

IC: v(x, 0, s) = f(x, s), s > 0.
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Leibniz Rule: Differentiation under the sign of integration

d

dt

(

∫

b(t)

a(t)

G(x, t)dx
)

=

∫

b(t)

a(t)

Gtdx+G(b(t), t)b′(t)

−G(a(t), t)a′(t). (29)

Use Leibniz rule on

u(x, t) =

∫

t

0

v(x, t− τ, τ)dτ

to have

ut =

∫

t

0
vt(x, t− τ, τ)dτ + v(x, t− t, t)×

dt

dt
− v(x, t− 0, 0) × 0

=

∫

t

0
vt(x, t− τ, τ)dτ + v(x, 0, t) =

∫

t

0
vtds+ f(x, t).
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Leibniz Rule: Differentiation under the sign of

integration(contd.)

Similarly,

uxx(x, t) =

∫

t

0

vxxds =
1

α

∫

t

0

vtds. (30)

Combining above two equations, we have

ut =

∫

t

0
vtds+ f(x, t) = αuxx + f(x, t).

Further, u given by

u(x, t) =

∫

t

0

v(x, t− τ, τ)dτ

satisfies both initial and boundary conditions.
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Example

Solve

ut − uxx = t sinx, 0 < x < π,

u(0, t) = 0, u(π, t) = 0, t > 0,

u(x, 0) = 0.

Solution: We first solve the related problem for v(x, t, s)

vt − vxx = 0, 0 < x < π,

v(0, t, s) = 0, v(π, t, s) = 0, t > 0, s > 0,

v(x, 0, s) = F (x, s) = s sinx.
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Example

From method of separation of variables, for fixed s, we obtain

v(x, t, s) =

∞
∑

n=1

Bn sinnx e−n2t, (31)

with Bn as

Bn =
2

L

∫

L

0
F (x, s) sin nxdx

=
2

π

∫

π

0
s sinx sinnxdx.

Hence,

B1 = s & Bn = 0 for n 6= 1. (32)
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Example

For any s > 0, we obtain

v(x, t, s) = se−t sinx. (33)

Therefore

v(x, t − τ, τ) = τe−(t−τ) sinx.

Hence, due to Duhamel’s principle, u(x, t) is given by

u(x, t) =

∫

t

0
v(x, t− τ, τ)dτ =

∫

t

0
τe−(t−τ) sinxdτ

= e−t sinx

∫

t

0
τeτdτ.

Lecture 40 MA542(2022) 21/04/2022 22 / 22


