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Finite Vibrating String with no External Force

• Recall the finite string problem in a computational domain
(x , t) ∈ [0, L]× [0,∞)

The governing equation:

utt = c2uxx , (x , t) ∈ (0, L)× (0,∞). (1)

The boundary conditions for all t > 0:

u(0, t) = 0, u(L, t) = 0. (2)

The initial conditions for 0 ≤ x ≤ L:

u(x , 0) = φ(x), ut(x , 0) = ψ(x). (3)
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Formal Solution of the Finite Vibrating String Problem
The solution is given by

u(x , t) =

∞
∑

n=1

sin
nπx

L

[

An cos
nπct

L
+ Bn sin

nπct

L

]

, (4)

with

An =
2

L

∫ L

0

φ(x) sin
nπx

L
dx , n = 1, 2, 3, . . . ,

Bn =
2

nπc

∫

L

0

ψ(x) sin
nπx

L
dx , n = 1, 2, 3, . . . .
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IBVP for Vibrating string (Contd.)
The individual displacement for each n in (4) is referred as
the n-th eigenfunction or the n-th normal mode of the vibrating string.

The n-th normal mode vibrates with a period of 2L
nc

seconds

which corresponds to a frequency of nc

2L cycles per second.

Since c2 = T/ρ, where T is the tension and ρ is the density of the string,
the frequency is

n

2L
(T/ρ)1/2.

Hence, if a string on a musical instrument is vibrating in a normal mode,
its pitch may be sharpened (frequency increased) by either decreasing the length L of
the string or increasing the tension in the string.
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IBVP for Vibrating string (Contd.)
The first normal mode n = 1 vibrates with
the lowest frequency

1

2L
(T/ρ)1/2.

This is called the fundamental frequency of the string.

If the string is made to vibrate in a higher mode,
the frequency is increased by an integer multiple and this corresponds to the
production of a musical harmonic or overtone.

When a vibrating system has multiples of fundamental frequency, say in
a violin, then music is produced.

When a vibrating system has frequencies which are not integer multiples
of fundamental frequency, then noise is produced.
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IBVP for Vibrating string (Contd.)

Figure : Fundamental mode of a vibrating string
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IBVP for Vibrating string with gravity(Contd.)

Figure : Second normal mode of a vibrating string
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IBVP for Vibrating string (Contd.)

Figure : Third normal mode of a vibrating string
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IBVP for Vibrating string (Contd.)

Figure : Fourth normal mode of a vibrating string
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IBVP for Vibrating string (Contd.)

Figure : A pulse traveling through a string with fixed endpoints as modeled by the wave

equation
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Solution of the Finite Vibrating String Problem: Example

Example: For a string of length L stretched between the points x = 0 and x = L,
find the vibration in the string subject to the following initial conditions:

u(x , 0) = sin(πx/L) + 1/2 sin(3πx/L), ut(x , 0) = 0.

Solution: Here, initial conditions are

φ(x) = sin(πx/L) + 1/2 sin(3πx/L), ψ(x) = 0.

Therefore, Bn = 0.
and

An =
2

L

∫ L

0

(

sin
πx

L
+

1

2
sin

3πx

L

)

sin
nπx

L
dx .

Due to the orthogonality of the set {sin nπx

L
: n = 1, 2, . . .},

only A1 and A3 are non-zero, and they are found as A1 = 1,A3 = 1/2.

Therefore, the solution of the IBVP is

u(x , t) = sin
πx

L
cos

πct

L
+

1

2
sin

3πx

L
cos

3πct

L
.
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Finite Vibrating String with Gravity
We consider an external force due to the gravitational acceleration g

only (consider a string oriented horizontally). Then the one-dimensional
wave equation becomes

utt = c2uxx − g , 0 < x < L, t > 0. (5)

We seek to find
the displacement of the string at any position x and at any time t subject to the
following boundary condition (for t > 0) and initial conditions (0 ≤ x ≤ L):

u(0, t) = 0, (6a)

u(L, t) = 0, (6b)

and

u(x , 0) = φ(x), (7a)

ut(x , 0) = ψ(x). (7b)
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Finite Vibrating String with Gravity (Contd.)

Due to the presence of the term g in equation (5), the equation has now become
non-homogeneous and hence the direct application of the method of separation of
variables will not work.

Now we intend to convert the given problem into two known solvable
problems:
one would resemble the problem with homogeneous equation and the other will take
care of the nonhomogeneous term.

Seek a solution in the form:

u(x , t) = v(x , t) + h(x), (8)

where h(x) is an unknown function of x alone.

Now, using (8) in (5), we obtain

vtt = c2[vxx + h′′(x)]− g . (9)
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Finite Vibrating String with Gravity (Contd.)
We select function h to take care of the non-homogeneous term g such
that

c2h′′(x) = g , (10)

and then in turn v (x , t) satisfies homogeneous wave equation

vtt = c2vxx . (11)

Both functions v and h are related by boundary conditions

v(0, t) + h(0) = 0, (12a)

v(L, t) + h(L) = 0, (12b)

and initial conditions

v(x , 0) + h(x) = φ(x), (13a)

vt(x , 0) = ψ(x). (13b)
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Finite Vibrating String with Gravity (Contd.)
Since, h is a user defined function, we set

h(0) = 0 & h(L) = 0. (14)

Now the original non-homogeneous problem can be conveniently split
into two problems:

Problem I:

c2h′′(x) = g ,

h(0) = 0 = h(L).

Problem II:

vtt = c2vxx ,

v(0, t) = 0 = v(L, t),

v(x , 0) = φ(x)− h(x), vt(x , 0) = ψ(x).
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Finite Vibrating String with Gravity (Contd.)
The solution for Problem I can be easily found by integrating h′′(x) twice:

h(x) =
gx2

2c2
+ Ax + B.

Upon using the conditions h(0) = 0 = h(L), we get

B = 0 & A = −gL/(2c2).

Hence

h(x) = −g
(L− x)x

2c2
. (15)
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Finite Vibrating String with Gravity (Contd.)
The solution of Problem II is known to us, which is

v(x , t) =

∞
∑

n=1

sin
nπx

L

[

An cos(
nπct

L
) + Bn sin(

nπct

L
)
]

, (16)

where An and Bn are given, respectively, by

An =
2

L

∫

L

0

[φ(x)− h(x)] sin(
nπx

L
) dx , n = 1, 2, 3, . . . , (17)

Bn =
2

nπc

∫ L

0

ψ(x) sin(
nπx

L
) dx , n = 1, 2, 3, . . . (18)

Hence the solution u(x , t) for our IBVP is given by the sum of (15) and
(16).

Remark: Clearly, the splitting method would be applicable only when
non-homogeneous term is a constant or a function of x .
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Duhamel’s Principle: Finite String Problem

If v(x , t, s) is the solution of the IBVP

vtt − c2vxx = 0, (x , t) ∈ (0, L)× (0,∞), (19)

with BCs v(0, t, s) = 0, v(L, t, s) = 0, t > 0, s > 0, and (20)

with ICs v(x , 0, s) = 0, vt(x , 0, s) = f (x , s), s > 0, (21)

then u(x , t) defined by

u(x , t) =

∫

t

0

v(x , t − τ, τ)dτ (22)

is the solution to the non-homogeneous problem

utt − c2uxx = f (x , t), (x , t) ∈ (0, L)× (0,∞), (23)

with BCs u(0, t) = 0, u(L, t) = 0, t > 0, and (24)

with ICs u(x , 0) = 0, ut(x , 0) = 0. (25)
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Finite String Problem:Duhamel’s Principle
Example: Find u(x , t) such that

utt − uxx = t sin
πx

L
, (x , t) ∈ (0, L)× (0,∞), (26)

with ICs u(x , 0) = 0, ut(x , 0) = 0, x ∈ (0, L), (27)

with BCs u(0, t) = 0, u(L, t) = 0, t > 0. (28)

Suppose v (x , t, s) is a solution to the user defined problem:

vtt − uxx = 0, (x , t) ∈ (0, L)× (0,∞), (29)

with ICs v(x , 0) = 0, vt(x , 0) = s sin
πx

L
, x ∈ (0, L), s > 0. (30)

with BCs v(0, t) = 0, v(L, t) = 0, t > 0. (31)
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Finite String Problem: Duhamel’s Principle
The solution is given by

v(x , t, s) =

∞
∑

n=1

sin
nπx

L

[

An cos
nπt

L
+ Bn sin

nπt

L

]

(32)

with

An =
2

L

∫

L

0

φ(x) sin
nπx

L
dx = 0, n = 1, 2, 3, . . .

Bn =
2

nπ

∫ L

0

ψ(x) sin
nπx

L
dx , n = 1, 2, 3, . . .

=
2

nπ

∫

L

0

s sin
πx

L
sin

nπx

L
dx .
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Finite String Problem: Duhamel’s Principle
Thus, B1 =

sL

π
and Bn = 0, n 6= 1, and hence

v(x , t, s) =
sL

π
sin

πx

L
sin

πt

L
.

Then solution u(x , t) of the given problem is obtained as

u(x , t) =

∫

t

0

v(x , t − τ, τ)dτ

=

∫ t

0

τL

π
sin

πx

L
sin

π(t − τ)

L
dτ

=
L

π
sin

πx

L

∫

t

0

τ sin
π(t − τ)

L
dτ.
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Infinite String Problem: Duhamel’s Principle
Infinite String Problem: Application of Duhamel’s Principle
Find u(x , t) such that

utt − uxx = x − t, (x , t) ∈ (−∞,∞)× (0,∞) (33)

ICs u(x , 0) = 0, ut(x , 0) = 0, x ∈ (−∞,∞), s > 0. (34)
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Infinite String Problem: Duhamel’s Principle
Solution: Suppose v (x , t, s) solves following user-defined problem

vtt − vxx = 0, (x , t) ∈ (−∞,∞)× (0,∞) (35)

ICs v(x , 0) = 0, vt(x , 0) = f (x , s) = x − s, x ∈ (−∞,∞), s > 0. (36)

D’Alembert’s solution is given by

v(x , t, s) =
1

2

∫

x+t

x−t

f (τ, s)dτ =
1

2

∫

x+t

x−t

(τ − s)dτ (37)

=
1

2

[τ2

2
− sτ

]x+t

x−t

= xt − ts = t(x − s). (38)

Solution to the non-homogeneous problem is given by

u(x , t) =

∫ t

0

v(x , t − τ, τ)dτ (39)

=

∫

t

0

2(t − τ)(x − τ)dτ = −
t3

6
+

t2x

2
. (40)
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