MA542: Differential Equations Lecture - 32

25/03/2022

MA542(2022)

• A second-order PDE in two independent variables x and y is given by

$$F(x, y, u, u_x, u_y, u_{xy}, u_{xx}, u_{yy}) = 0.$$
 (1)

• The linear form: The unknown function u(x, y) satisfies an equation

$$Au_{xx} + Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu + G = 0.$$
 (2)

where A, B, C, D, E, F and G are functions of x and y. Facts:

- The expression Lu ≡ Au_{xx} + Bu_{xy} + Cu_{yy}, containing the second derivatives, is called the Principal part of the equation.
- Classification of such PDEs is based on this principal part.

Second Order Linear Equations

• Consider the second-order linear equation in two independent variables x and y given by (2) in the following form:

$$(Au_{xx} + Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu)(x, y) = -G(x, y).$$
(3)

In operator notation

$$(T(u))(x,y) = -G(x,y) = f(x,y) (say),$$
 (4)

with

$$T(u) = Au_{xx} + Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu.$$

• Since *T* is linear, we have

 $T(u_1 + u_2) = T(u_1) + T(u_2) \& T(cu) = cT(u) \forall c \in \mathbb{R}.$ (5)

Remark:

 Equation (4) is called homogeneous, if f ≡ 0, otherwise it is called non-homogeneous.

The Principle of Superposition

Theorem

Suppose u_1 solves linear PDE $T(u) = f_1$ and u_2 solves $T(u) = f_2$, then $u = c_1u_1 + c_2u_2$ solves $T(u) = c_1f_1 + c_2f_2$. In particular, if u_1 and u_2 both solve the same homogeneous linear PDE T(u) = 0, so does $u = c_1u_1 + c_2u_2$. **Remark:**

- Any linear combination of solutions of a linear homogeneous PDE is also a solution.
- A solution u = u(x, y) to a homogeneous equation T(u) = 0 is called the *general solution* if it contains two arbitrary functions.
- If u is a general solution to homogeneous PDE T(u) = 0 and u_p is a particular solution to non-homogeneous PDE T(w) = f, then u + u_p is also a solution to the non-homogeneous equation and it is called the general solution to the PDE T(w) = f.

Linear Equations with Constant Coefficients

With the notations $D = \partial/\partial x$ and $D' = \partial/\partial y$, a PDE with constant coefficients can be written as

$$F(D,D')u = f. (6)$$

We classify PDE (6) into two main types (with respect to the appearance of the operators):

• **Reducible:** Equation (6) is called reducible if it can be written as the product of linear factors of the form aD + bD' + c, with constants *a*, *b*, *c*. For example, the equation

$$u_{xx}-u_{yy}=0.$$

In this case

$$F(D,D') = D^2 - (D')^2 = (D+D')(D-D').$$

• Irreducible: Equation (6) is called irreducible if it not reducible. For example when $F(D, D') = D^2 - D'$.

Linear Equations with Constant Coefficients: Reducible Equation

An *n*-th order reducible PDE can be written as

$$F(D, D')u = \Big(\prod_{r=1}^{n} (a_r D + b_r D' + c_r)\Big)u = f.$$
 (7)

Theorem 1

If $(a_rD + b_rD' + c_r)$ is a factor of F(D, D'), $a_r \neq 0$, then

$$u_r = \exp\left\{-\frac{c_r x}{a_r}\right\}\phi_r(b_r x - a_r y)$$

is a solution of the equation F(D, D')u = 0. Here, ϕ_r is an arbitrary real-valued single variable function.

Theorem 2

If $(b_r D' + c_r)$ is a factor of F(D, D') and ϕ_r is an arbitrary real-valued single variable function, then

$$u_r = \exp\left\{-\frac{c_r y}{b_r}\right\}\phi_r(b_r x)$$

is a solution of the equation F(D, D')u = 0.

Linear Equations with Constant Coefficients: Reducible Equation

Theorem 3

If $(aD + bD' + c)^m$ $(m \le n, a \ne 0)$ is a factor of F(D, D') and $\phi_1, \phi_2, \ldots, \phi_m$ are arbitrary real-valued single variable functions, then

$$\exp\left\{-\frac{cx}{a}\right\}\sum_{i=1}^{m}x^{i-1}\phi_i(bx-ay)$$

is a solution of the equation F(D, D')u = 0.

Theorem 4

If $(bD' + c)^m$ $(m \le n)$ is a factor of F(D, D') and $\phi_1, \phi_2, \ldots, \phi_m$ are real-valued single variable functions, then

$$\exp\left\{-\frac{cy}{b}\right\}\sum_{i=1}^{m}x^{i-1}\phi_i(bx)$$

is a solution of the equation F(D, D')u = 0. *n* is the order of the PDE.

Reducible Equations: Examples

Example

• General solution of

$$u_{xx} - u_{yy} = 0$$

is given by

$$u = \phi_1(x+y) + \phi_2(x-y),$$

 ϕ_1 and ϕ_2 are arbitrary real-valued single variable functions.

• By Theorem 1,
$$D^2 - D'^2 = (D - D')(D + D')$$
 and $a_1 = 1, b_1 = -1, a_2 = 1, b_2 = 1$ and $c_1 = 0 = c_2$.

• Hence the solution.

Reducible Equations: Examples

Example

General solution of

$$\frac{\partial^4 u}{\partial x^4} + \frac{\partial^4 u}{\partial y^4} = 2 \frac{\partial^4 u}{\partial x^2 \partial y^2}$$

is given by

$$u = x\phi_1(x - y) + \phi_2(x - y) + x\psi_1(x + y) + \psi_2(x + y).$$

- We have $D^4 + D^{'^4} 2D^2D^{'^2} = (D^2 D^{'^2})^2 = (D + D')^2(D D')^2$.
- By using Theorem 3, m=2. Also, n = 2 for both expressions. For $(D + D')^2$ part, a = 1, b = 1 whereas for the $(D D')^2$ part, a = 1, b = -1.
- Hence the solution.

Classification

Consider

$$Au_{xx} + Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu + G = 0.$$
 (8)

- At a point (x, y), equation (8) is said to be
 - ► Hyperbolic if $B^2(x, y) 4A(x, y)C(x, y) > 0$ ► Parabolic if $B^2(x, y) - 4A(x, y)C(x, y) = 0$ ► Elliptic if $B^2(x, y) - 4A(x, y)C(x, y) < 0$
- Each category relates to specific problems such as
 - Wave Equation: u_{tt} c²u_{xx} = 0. (Hyperbolic)
 Laplace's Equation: u_{xx} + u_{yy} = 0. (Elliptic)
 Heat (or Diffusion) Equation: u_t = αu_{xx}. (Parabolic)

Methods and Techniques for Solving PDEs

- Change of coordinates: A PDE can be converted to ODEs or to an easier PDE by changing the coordinates of the problem.
- Separation of variables: A PDE in *n* independent variables is reduced to *n* ODEs.
- Integral transforms: A PDE in n independent variables is reduced to one in (n-1) independent variables. Hence, a PDE in two variables could be changed to an ODE.
- Numerical Methods