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Linear First-Order PDEs

How do first-order PDEs occur?

• First-order PDEs mainly connect to geometry.

• Two-parameter family of surfaces: Let

f (x , y , u, a, b) = 0 (1)

represent two parameters family of surfaces in R
3, where a and b are

arbitrary constants.
Differentiating (1) with respect to x and y yields relations

∂f

∂x
+ p

∂f

∂u
= 0, (2)

∂f

∂y
+ q

∂f

∂u
= 0. (3)

Eliminating a and b from (1), (2) and (3), we get a relation of the
form

F (x , y , u, p, q) = 0, (4)

which is a PDE for the unknown function u of two independent
variables x and y .
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Linear First-Order PDEs

Example
The equation

x2 + y2 + (u − c)2 = r2, (5)

where r and c are arbitrary constants, represents the set of all spheres
whose centers lie on the u-axis.
Differentiating (5) with respect to x and y , respectively, we obtain

x + (u − c)
∂u

∂x
= 0. (6)

y + (u − c)
∂u

∂y
= 0. (7)

Eliminating the arbitrary constant c from (6) and (7), we obtain a
first-order PDE:

y
∂u

∂x
− x

∂u

∂y
= 0. (8)
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Linear First-Order PDEs

Example
The equation

x2 + y2 = (u − c)2 tan2 α, (9)

where c and α are arbitrary constants, represents a family of all right
circular cones having u-axis as their axes.
Differentiating (9) with respect to x and y , respectively, we obtain

∂u

∂x
(u − c) tan2 α = x . (10)

∂u

∂y
(u − c) tan2 α = y . (11)

Eliminating the arbitrary constants c and α from (10) and (11), we
obtain a first-order PDE:

y
∂u

∂x
− x

∂u

∂y
= 0, (12)

which is interestingly the same as (8).

MA542(2022):PDE



Linear First-Order PDEs

• Unknown function of known functions

• Unknown function of a single known function

Let
u = f (g), (13)

where f is an unknown function and g is a known function of two
independent variables x and y .
Differentiating (13) with respect to x and y , respectively, yields the
equations

ux = f
′(g)gx (14)

and
uy = f

′(g)gy . (15)

Eliminating f ′(g) from (17) and (18), we obtain

gyux − gxuy = 0,

which is a first-order PDE for u.
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Linear First-Order PDEs

Example
Consider the surfaces described by an equation of the form

u = f (x2 + y2), (16)

where f is an arbitrary function of a known function g(x , y) = x2 + y2.
Differentiating (16) with respect to x and y , it follows that

ux = 2xf ′(g), uy = 2yf ′(g),

where f ′(g) = df
dg
.

Eliminating f ′(g) from the above two equations, we obtain a first-order
PDE

yux − xuy = 0.

The forms of (5) and (9) allow for both to correspond to the same PDE.
That is, both (5) and (9) have the similar properties as mentioned, i.e.,
u = f (x2 + y2).
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Linear First-Order PDEs

• Unknown functions of two known functions

Let
u = f (x − ay) + g(x + ay), (17)

where a > 0 is a constant.
With v(x , y) = x − ay and w(x , y) = x + ay , we can write (17) as

u = f (v) + g(w). (18)

Differentiating (18) w. r. t. x and y , respectively, yields

p = ux = f ′(x − ay) + g ′(x + ay),

q = uy = −af ′(x − ay) + ag ′(x + ay).

Eliminating f ′(v) and g ′(w) (by differentiating above again), we get

qy = a2px .

In terms of u, the above PDE is the well-known one-dimensional
wave equation

uyy = a2uxx .
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Linear First-Order PDEs

Example (Geometrical problem)
All functions u(x , y) such that the tangent plane to the graph
u = u(x , y) at any arbitrary point (x0, y0, u(x0, y0)) passes through the
origin is characterized by the PDE xux + yuy − u = 0.

The equation of the tangent plane at (x0, y0, u(x0, y0)) is

ux(x0, y0)(x − x0) + uy(x0, y0)(y − y0)− (u − u(x0, y0)) = 0.

Since this plane passes through the origin (0, 0, 0), we have

−ux(x0, y0)x0 − uy (x0, y0)y0 + u(x0, y0) = 0. (19)

For equation (19) to hold for all (x0, y0) in the domain of u, we must
have u satisfying

xux + yuy − u = 0,

which is a first-order PDE.
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Linear First-Order PDEs

Cauchy’s problem or IVP for first-order PDEs:
Let Γ be a given curve in R

2 described parametrically by the equations

x = x0(s), y = y0(s); s ∈ I , (20)

where x0(s), y0(s) are in C 1(I ).
The IVP or Cauchy’s problem for the first-order PDE

F (x , y , u, p, q) = 0 (21)

is to find a function φ = φ(x , y) with the following properties:

• φ(x , y) and its partial derivatives with respect to x and y are
continuous in a region Ω of R2 containing the curve Γ.

• φ = φ(x , y) is a solution of (21) in Ω, i.e.,

F (x , y , φ(x , y), φx (x , y), φy (x , y)) = 0 in Ω.

• On the curve Γ,

φ(x0(s), y0(s)) = u0(s), s ∈ I . (22)

The curve Γ is called the initial curve of the problem and the function
u0(s) is called the initial data. Equation (22) is called the initial
condition (or side condition) of the problem.
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Linear First-Order PDEs

• Well-posed Problem (In the sense of Hadamard)

The Cauchy’s problem (PDE + side condition) is said to be well-posed if
it satisfies the following criteria:

1 The solution exists.

2 The solution is unique.

3 The solution depends continuously on the initial and/or boundary
data.

If one or more of the above conditions does not/do not hold, we say that
the problem is ill-posed.
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Linear First-Order PDEs

The most general first-order linear PDE has the form

a(x , y)ux + b(x , y)uy = c(x , y)u + d(x , y), (23)

where a, b, c , and d are given functions of x and y . These functions are
assumed to be continuously differentiable.
Observe that the left hand side of (23), i.e.,

a(x , y)ux + b(x , y)uy = ∇u · (a, b)

is (essentially) a directional derivative of u(x , y) in the direction of the
vector (a, b), where (a, b) is defined and nonzero.

Remarks: When a and b are constants, the vector (a, b) has a fixed
direction and magnitude, but now it is seen that the vector (a, b) can
change as its base point (x , y) varies. Thus, (a, b) is a vector field on the
plane.
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Linear First-Order PDEs

The equations

dx

dt
= a(x , y),

dy

dt
= b(x , y), (24)

determine a family of curves x = x(t), y = y(t) whose tangent vector
( dx
dt
, dy
dt
) coincides with the direction of the vector (a, b).

Therefore,

d

dt
u{(x(t), y(t))} =

∂u

∂x

dx

dt
+

∂u

∂y

dy

dt

= ux(x(t), y(t))a(x(t), y(t))

+uy (x(t), y(t))b(x(t), y(t))

= c(x(t), y(t))u(x(t), y(t)) + d(x(t), y(t))

= c(t)u(t) + d(t),

where we have used the chain rule and (23).
Thus, along these curves, u(t) = u(x(t), y(t)) satisfies the ODE

u′(t)− c(t)u(t) = d(t). (25)
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Linear First-Order PDEs

Let µ(t) = exp
[

−
∫ t

0
c(τ)dτ

]

be an integrating factor for (25). Then,

the solution is given by

u(t) =
1

µ(t)

[
∫ t

0

µ(τ)d(τ)dτ + u(0)

]

. (26)

The approach described above is called the method of characteristics. It
is based on the geometric interpretation of PDE (23).
Remarks.

• The system of ODEs (24) is known as the characteristic equation for
the PDE (23). The solution curves of the characteristic equation are
the characteristic curves for (23).

• The values u(t) of the solution u along the entire characteristic
curves can be completely determined once the value
u(0) = u(x(0), y(0)) is prescribed.

• Assuming certain smoothness conditions on the functions a, b, c ,
and d , the existence and uniqueness theory for ODEs guarantees a
unique solution curve (x(t), y(t), u(t)) of (24) and (25).
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