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Stability of linear systems

Stability by Lypunov’s Direct Method

Observe the following regarding an equilibrium point of a conservative dynamical system: If the

potential energy has a relative minimum at the equilibrium point, then the equilibrium point is

stable; otherwise it is unstable. This principle was generalized by the Russian mathematician

Lypunov (or Liapunov) to obtain a simple but powerful method for studying the stability of more

general autonomous systems. The procedure is known as Lypunov’s direct (or second) method.

Consider an autonomous system
dx
dt

= F (x , y),
dy

dt
= G(x , y).

}

(1)

Assume that this system has an isolated critical point at the origin (0, 0) and that F and G have

continuous first-order partial derivatives for all (x , y).

Let C = [x(t), y(t)] be a path of (1) and consider a function E(x , y) that is continuous and has

continuous first-order partial derivatives in a region containing this path.

Differential Equations 2 / 13



Stability of linear systems

If a point (x , y) moves along the path in accordance with the equations x = x(t) and y = y(t),

then E(x , y) can be regarded as a function of t along C , and its rate of change is

dE

dt
=

∂E

∂x

dx

dt
+

∂E

∂y

dy

dt

=
∂E

∂x
F +

∂E

∂y
G . (2)

Some definitions

Suppose that E(x , y) is continuous and has continuous first-order partial derivatives at all points

(x , y) in some region D containing the origin.

1 The function E(x , y) is called positive definite in D if E(0, 0) = 0 and E(x , y) > 0 for all

other points (x , y) 6= (0, 0) in D.

2 The function E(x , y) is called positive semidefinite in D if E(0, 0) = 0 and E(x , y) ≥ 0 for

all other points (x , y) 6= (0, 0) in D.

3 The function E(x , y) is called negative definite in D if E(0, 0) = 0 and E(x , y) < 0 for all

other points (x , y) 6= (0, 0) in D.

4 The function E(x , y) is called negative semidefinite in D if E(0, 0) = 0 and E(x , y) ≤ 0 for

all other points (x , y) 6= (0, 0) in D.
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Stability of linear systems

Observations

It is clear that functions of the form E(x , y) = ax2m + by2n, where a and b are positive

constants and m and n are positive integers, are positive definite.

Since E(x , y) is negative if and only if −E(x , y) is positive definite, functions of the form

ax2m + by2n with a < 0 and b < 0 are negative definite.

The functions x2m, y2n and (x − y)2m are not positive definite, but are nevertheless positive

semidefinite.

If E(x , y) is positive definite, then z = E(x , y) can be interpreted as the equation of a

surface that resembles a paraboloid opening upward and tangent to the xy -plane at the

origin. (Figure 1)
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Stability of linear systems

3

Figure 1

Differential Equations 5 / 13



Stability of linear systems

Definition

A positive definite function E(x , y) with the property that

∂E

∂x
F +

∂E

∂y
G (3)

is negative semidefinite is called a Lypunov function of the system (1).

By formula (2), the requirement that (3) be negative semidefinite means that dE/dt ≤ 0, and

therefore E is non-increasing, along with the paths of (1) near the origin. These functions

generalize the concept of the total energy of a physical system.

Theorem

If there exists a Lypunov function E(x , y) for the system (1), then the critical point (0, 0) is

stable. Furthermore, if this function has the additional property that the function (3) is negative

definite, then the critical point (0, 0) is asymptotically stable.
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Stability of linear systems

Proof

Let C1 be a circle of radius R > 0 centered on the origin and assume also that C1 is small enough

to lie entirely in the domain of definition of the function E .

� �
Figure 2
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Stability of linear systems

Since E(x , y) is continuous and positive definite, it has a positive minimum m on C1. Next

E(x , y) is continuous at the origin and vanishes there, so we can find a positive number r < R

such that E(x , y) < m whenever (x , y) is inside the circle C2 of radius r .

Now let C = [x(t), y(t)] be any path which is inside C2 for t = t0. Then E(t0) < m, and since (3)

is negative semidefinite, we have dE/dt ≤ 0, which implies that E(t) ≤ E(t0) < m for all t > t0.

It follows that the path C can never reach the circle C1 for any t > t0, so we have stability.

To prove the second part of the theorem, it suffices to show that under the additional hypothesis,

we also have E(t) → 0, for since E(x , y) is positive definite this will imply that the path C

approaches the critical point (0, 0).

We begin by observing that since dE/dt < 0, it follows that E(t) is a decreasing function; and

since by hypothesis E(t) is bounded below by 0, we conclude that E(t) approaches some limit

L ≥ 0 as t → ∞.
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Stability of linear systems

To prove that E(t) → 0, it is sufficient to show that L = 0. Therefore, we assume that L > 0 and

deduce a contradiction. Choose a positive number r̄ < r with the property that E(x , y) < L

whenever (x , y) is inside the circle C3 with radius r̄ .

Since the function (3) is continuous and negative definite, it has a negative maximum −k in the

consisting of the circles C1 and C3 and the region between them.

This ring contains the entire path C for t ≥ t0 and so the equation

E(t) = E(t0) +

∫ t

t0

dE

dt
dt

yields the inequality

E(t) ≤ E(t0)− k(t − t0) (4)

for all t ≥ t0.

However, the right side of (4) becomes negatively infinite as t → ∞ and therefore E(t) → −∞

as t → ∞. This contradicts the fact that E(x , y) ≥ 0 and therefore, we are in a position to

conclude that L = 0 and the proof is complete.
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Stability of linear systems

Example

Consider the equation of a mass m attached to a spring:

m
d2x

dt2
+ c

dx

dt
+ kx = 0, (5)

where c ≥ 0 is a constant representing the viscosity of the medium through which the mass

moves, and k > 0 is the spring constant.

Solution

The autonomous system equivalent to (5) is

dx
dt

= y ,
dy

dt
= − k

m
x − c

m
y ,

}

(6)

and its only critical point is (0, 0).

The kinetic energy of the mass is my2/2, and the potential energy (or the energy stored in the

spring) is
∫ x

0
kξ dξ =

1

2
kx2.
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Stability of linear systems

Thus the total energy of the system is

E(x , y) =
1

2
my2 +

1

2
kx2. (7)

It is easy to see that (7) is positive definite and also

∂E

∂x
F +

∂E

∂y
G = kxy +my

(

−
k

m
x −

c

m
y

)

= −cy2 ≤ 0.

Based on the above, we observe that (7) is a Lypunov function for (6) and hence the critical

point (0, 0) is stable.
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Stability of linear systems

Example

The system
dx
dt

= −2xy ,
dy

dt
= x2 − y2,

}

(8)

has (0, 0) as an isolated critical point.

To establish stability, construct a Lypunov function of the form E(x , y) = ax2m + by2n. It is clear

that

∂E

∂x
F +

∂E

∂y
G = 2max2m−1(−2xy) + 2nby2n−1(x2 − y2)

= −4max2my + 2nbx2y2n−1 − 2nby2n+2 .

By choosing m = 1, n = 1, a = 1 and b = 2, we have E(x , y) = x2 + 2y2 which is positive

definite, and (∂E/∂x)F + (∂E/∂y)G = −4y4 which is negative semidefinite. The critical point

(0, 0) of the system (8) is therefore stable.
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Stability of linear systems

However, it may be observed that it may not be easy to construct Lypunov function for

complicated situations. In this context, the following theorem may be useful.

Theorem

The function E(x , y) = ax2 + bxy + cy2 is positive definite if and only if a > 0 and b2 − 4ac < 0,

and is negative definite if and only if a < 0 and b2 − 4ac < 0.

Proof

If y = 0, we have E(x , 0) = ax2, so E(x , 0) > 0 for x 6= 0 if and only if a > 0.

If y 6= 0, we have

E(x , y) = y2

[

a

(

x

y

)2

+ b

(

x

y

)

+ c

]

;

and when a > 0, the bracketed polynomial in x/y (which is positive for large x/y) is positive for

all x/y if and only if b2 − 4ac < 0.

This proves the first part of the theorem and the second part follows by considering the function

−E(x , y).
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