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Stability of linear systems

Types of critical points

Consider the following autonomous system:

dx
dt

= F (x , y),
dy
dt

= G(x , y),

}

(1)

where the functions F and G are continuous and have continuous first-order partial derivatives

throughout the xy -plane. The critical points can be found by solving F (x , y) = 0 and

G(x , y) = 0. There are four simple types of critical points. But before discussing the critical

points, we need to know certain other aspects as follows.

Definition: Let (x0, y0) be an isolated critical point of (1). If Γ ≡ [x(t), y(t)] is a path of (1),

then we say Γ approaches (x0, y0) as t → ∞ if

lim
t→∞

x(t) = x0, lim
t→∞

y(t) = y0. (2)

Geometrically, this means that if P = (x , y) is a point that traces out Γ in accordance with the

equations x = x(t) and y = y(t), then P → (x0, y0) as t → ∞.
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Stability of linear systems

Definition: If it is also true that

lim
t→∞

y(t)− y0

x(t)− x0
(3)

exists or if the quotient in (3) becomes either positively or negatively infinite as t → ∞, then we

say that Γ enters the critical point (x0, y0) as t → ∞.

The quotient in (3) is nothing but the slope of the line joining (x0, y0) and the point P with

coordinates x(t) and y(t).

We may also consider limits as t → −∞. It is clear that these properties are properties of the

path Γ and do not depend on which solution is used to represent the path.
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Stability of linear systems

For some cases, it is possible to find the explicit solutions of the system (1) and these solutions

can be used to determine the paths. However, in most cases, in order to find the paths, it is

necessary to eliminate t between the two constituent equations of the system to get

dy

dx
=

G(x , y)

F (x , y)
. (4)

This first-order equation (4) gives the slope of the tangent to the path of (1) that passes through

the point (x , y) provided that the functions F (x , y) and G(x , y) are not both zero at this point.

In this case, of course, this point is a critical point and no path passes through it. The paths of

(1) therefore coincide with the one-parameter family of orthogonal curves of (4) and this family

can be obtained without much difficulty. However, it may be noted that while the paths of (1)

are directed curves, the integral curves of (4) have no direction associated with them.

We now discuss different types of critical points mainly with respect to geometrical interpretation.

In most of the cases, the origin O = (0, 0) is the point which is a critical point.
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Stability of linear systems

Node

It is a critical point approached and also entered by each path as t → ∞ (or as t → −∞). Here

there are four half-line paths, AO, BO, CO and DO which together with the origin make up the

lines AB and CD. All other paths resemble paths of parabolas and as each of these paths

approaches O, its slope approaches that of the line AB. Refer to Figure 1 below.

Figure 1
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Stability of linear systems

Example: Consider the system

dx
dt

= x ,
dy
dt

= −x + 2y .

}

(5)

Here origin is the only critical point.

Solution

Here a1 = 1, b1 = 0, a2 = −1, b2 = 2 and hence the auxiliary equation

m2 − (a1 + b2)m + (a1b2 − a2b1) = 0 for this system is m2 − 3m + 2 = 0 giving us m = 1, 2.

Hence the general solution is

x = c1A1e
t + c2B1e

2t = c1e
t ,

y = c1A2e
t + c2B2e

2t = c1e
t + c2e

2t .

}

(6)

When c1 = 0, then x = 0, y = c2e
2t . In this case, the path is the positive y -axis when c2 > 0 and

the negative y -axis when c2 < 0. Each path approaches and enters the origin as t → −∞.
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Stability of linear systems

When c2 = 0, then x = c1e
t , y = c1e

t . This path is the half-line y = x , x > 0 when c1 > 0, and

the half-line y = x , x < 0 when c1 < 0. Again both paths approach and enter the origin as

t → −∞.

When both c1 and c2 are not zero, the paths lie on the parabolas y = x + (c2/c
2
1 )x

2, which go

through the origin with slope 1. It should be understood that each of these paths consists of only

part of a parabola, the part with x > 0 if c1 > 0, and the part with x < 0 if c1 < 0.

Each of these paths also approaches and enters the origin as t → −∞; this can be seen at once

from (6).

We can also proceed directly from (5):

dy

dx
=

−x + 2y

x
, (7)

which gives the slope of the tangent to the path through (x , y) [provided (x , y) 6= (0, 0)], then on

solving (7), we find y = x + cx2.

This procedure yields the curves on which the paths lie (except those on the y -axis), but gives no

information about the manner in which the paths are traced out. It is clear that the critical point

(0, 0) is a node for (5) and it is stable. Refer to Figure 2 for complete visualization.
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Stability of linear systems

Figure 2
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Stability of linear systems

Saddle point

It is a critical point that is approached and entered by two half-line paths AO and BO as t → ∞,

and these paths lie on a line AB. It is also approached and entered by two half-line paths CO and

DO (lying on line CD) as t → ∞.

Further to it, Between the four half-line paths there are four regions − each containing a family

of paths resembling (rectangular) hyperbolas. These paths do not approach O as t → ∞ or as

t → −∞ but are asymptotic to one or another of the half-line paths as t → ∞ and as t → −∞.

(Fig 3)

Figure 3
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Stability of linear systems

Example

dx

dt
= x ,

dy

dt
= −y .

Solution

Here a1 = 1, a2 = 0, b1 = 0, b2 = −1. The auxiliary equation for the system is

m2 − 1 = 0,

giving us m = 1,−1.

Hence the general solution can be found as

x = c1e
t ,

y = c2e
−t .

}

(8)
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Stability of linear systems

When c1 = 0, then x = 0, y = c2e
−t . In this case, the path is the positive y -axis when c2 > 0

and the negative y -axis when c2 < 0. Each path approaches and enters the origin as t → ∞.

When c2 = 0, then x = c1e
t , y = 0. In this case, the path is the positive x-axis when c1 > 0 and

the negative x-axis when c1 < 0. Each path approaches and enters the origin as t → −∞.

When both c1 and c2 are not zero, the paths lie on the (rectangular) hyperbolas xy = c1c2, which

will never go through the origin.

Clearly (0, 0) is a saddle point which is unstable.
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Stability of linear systems

Center

A center, which is also sometimes called a vortex, is a critical point that is surrounded by a family

of closed curves. It is not approached by any path as t → ∞ or as t → −∞.

Example

The system
dx

dt
= −y ,

dy

dt
= x (9)

has the origin as its only critical point.

Here a1 = 0, a2 = 1, b1 = −1, b2 = 0. Hence the auxiliary equation m2 + 1 = 0 gives us the roots

as m = ±i.

Therefore, the general solution of (9) can be written as

x = −c1 sin t + c2 cos t, y = c1 cos t + c2 sin t. (10)
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Stability of linear systems

The solution of (10) satisfying the conditions x(0) = 1 and y(0) = 0 is clearly

x = cos t, y = sin t, (11)

and the solutions determined by x(0) = 0 and y(0) = −1 is

x = sin t = cos(t − π/2), y = − cos t = sin(t − π/2). (12)

These two different solutions (11) and (12) define the same path C (Figure 4) which is evidently

the circle x2 + y2 = 1. Both (11) and (12) show that the path is traced out in the anti-clockwise

direction.

If we eliminate t between the equations of the system, we get

dy

dx
= −

x

y

whose general solution x2 + y2 = c2 yields all the paths (but without their directions).

Obviously the critical point (0, 0) of the given system (9) is a center.
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Stability of linear systems

Figure 4
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Stability of linear systems

Spiral

A spiral or a focus is a critical point that is approached in a spiral-like manner by a family of

paths that wind around it an infinite number of times as t → ∞ or as t → −∞. Note that

although the paths approach the origin O, they actually do not enter it.

That is, a point P moving along such a path approaches O as t → ∞ ( or t → −∞) but the line

OP does not approach any definite direction.

Figure 5
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Stability of linear systems

Example

If a is an arbitrary constant, then the system

dx
dt

= ax − y ,
dy
dt

= x + ay

}

(13)

has the origin as its only critical point.

Solution

The differential equation of the paths

dy

dx
=

x + ay

ax − y
(14)

can be easily solved by putting x = r cos θ, y = r sin θ from which we know r2 = x2 + y2 and

θ = arctan(y/x).

Therefore, we have

r
dr

dx
= x + y

dy

dx
and r2

dθ

dx
= x

dy

dx
− y .
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Stability of linear systems

With this result, (14) gives
dr

dθ
= ar , which gives us

r = c eaθ (15)

The two possible spiral configurations are for a > 0 and a < 0.

Figure 6
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Stability of linear systems

The directions in which these paths are traversed can be seen from the fact that
dx

dt
= −ay when

x = 0. If a = 0, then r = c which is the polar equation of the family x2 + y2 = c2 of all circles

centered on origin.

In other words,

this example can be considered as the generalization of the previous example and since the center

shown in Figure 4 stands on the borderline between the spirals of Figure 6, a critical point that is

a center is often called a borderline case.
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