MA 542 Differential Equations Lecture 18 (February 11, 2022)

Systems in matrix form

Consider a system of first-order equations in n unknowns $x_k(t)$, k = 1, 2, ..., n

$$x_{1}'(t) = a_{11}(t)x_{1} + a_{12}(t)x_{2} + \dots + a_{1n}x_{n} + b_{1}(t) \\ x_{2}'(t) = a_{21}(t)x_{1} + a_{22}(t)x_{2} + \dots + a_{2n}x_{n} + b_{2}(t) \\ \dots & \dots & \dots \\ \dots & \dots & \dots \\ x_{n}'(t) = a_{n1}(t)x_{1} + a_{n2}(t)x_{2} + \dots + a_{nn}x_{n} + b_{n}(t) \end{cases} \right\}, t \in I,$$

$$(1)$$

where all the functions a_{ij} , b_i , i, j = 1, 2, ..., n are given.

Define a matrix A(t) by

$$A(t) = \begin{bmatrix} a_{11}(t) & a_{12}(t) & \cdots & a_{1n}(t) \\ a_{21}(t) & a_{22}(t) & \cdots & a_{2n}(t) \\ \cdots & \cdots & \cdots & \cdots \\ \vdots \\ a_{n1}(t) & a_{n2}(t) & \cdots & a_{nn}(t) \end{bmatrix}.$$
 (2)

Define the column vectors $\bar{b}(t)$ and $\bar{x}(t)$, respectively, by

ħ

$$h(t) = \begin{bmatrix} b_1(t) \\ b_2(t) \\ \vdots \\ b_n(t) \end{bmatrix}, \quad \bar{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_n(t) \end{bmatrix}.$$
(3)

Then the system (1) reduces to

$$\bar{x}' = A(t)\bar{x} + \bar{b}(t), \ t \in I.$$
(4)

Equation (4) is a vector matrix representation of a linear non-homogeneous system (1).

If $\overline{b}(t) = 0 \ \forall t \in I$, then (4) reduces to a homogeneous system

$$\bar{\mathbf{x}}' = \mathbf{A}(t)\bar{\mathbf{x}}, \ t \in \mathbf{I}.$$
(5)

Example

Consider the system of equations

$$\begin{aligned} x_1' &= 5x_1 - 2x_2, \\ x_2' &= 2x_1 + x_2. \end{aligned}$$

This system of two equations can be represented in the form

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}' = \begin{bmatrix} 5 & -2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Theorem

Let A(t) be an $n \times n$ matrix that is continuous on a closed and bounded interval *I*. Then there exists a solution to the initial value problem

$$\bar{x}' = A(t)\bar{x}, \quad \bar{x}(t_0) = \bar{x}_0; \ t, t_0 \in I$$
 (6)

and in addition, the solution is unique.

Many times it is convenient to construct a matrix with solutions of (5) as columns. In other words, consider a set of *n* solutions of the system (5) and define a matrix ϕ whose columns are these *n* solutions.

This solution is called a solution matrix since it satisfies the homogeneous matrix differential equation

a

$$\phi' = A(t)\phi, \ t \in I.$$

If the columns are linearly independent, the matrix
$$\phi$$
 thus obtained is called a fundamental matrix
for the system (5). We associate with (5), a homogeneous matrix differential equation

$$X' = \mathcal{A}(t)X, \ t \in I.$$
(8)

Theorem

A solution matrix ϕ of (8) on I is a fundamental matrix of (4) on I if and only if det $\phi(t) \neq 0$ for $t \in I$.

(7)

Linear systems with constant coefficients

Assuming that A is a constant matrix, we first find the characteristic values of the matrix A. If the characteristic values of the matrix A are known then, in general, a solution can be obtained in an explicit form.

Theorem

Consider a linear homogeneous system with constant matrix:

$$\bar{\mathbf{x}}' = \mathbf{A}(t)\bar{\mathbf{x}}, \ t \in \mathbf{I}.$$
(9)

The general solution of (9) is given by $\bar{x}(t) = \alpha e^{\lambda t} \bar{c}$, where λ is a scalar to be obtained, α an arbitrary constant and \bar{c} is a column matrix.

Procedure

Choose a solution of (9) in the form

$$ar{x}(t) = e^{\lambda t}ar{c}$$

where \bar{c} is a constant column vector and λ is a scalar.

(10)

Substituting (10) in (9), we get

$$(\lambda I - A)\bar{c} = 0, \tag{11}$$

where I is the identity matrix. The system of linear algebraic homogeneous equations (11) can now be solved for \bar{c} .

System (11) has a non-trivial solution \bar{c} iff λ satisfies the condition $\det(\lambda I - A) = 0$. Suppose that $P(\lambda) = \det(\lambda I - A)$.

It is clear that $P(\lambda)$ is a polynomial of degree *n*. This polynomial $P(\lambda)$ is called the characteristic polynomial of the matrix *A* and the equation

F

$$P(\lambda) = 0 \tag{12}$$

is called the characteristic equation for A.

Since (12) is an algebraic equation, it admits n roots which may be distinct, repeated or complex. The roots of (12) are called eigenvalues or characteristic values of A.

If λ_1 is an eigenvalue of A and \bar{c}_1 is the non-trivial solution of (11) corresponding to this eigenvalue, then \bar{c}_1 is called an *eigenvector* of A corresponding to the eigenvalue λ_1 .

Thus, if $\{x_k(t)\}, k = 1, 2, ..., n$ is a set of *n* linearly independent vector functions corresponding to the eigenvalues λ_k are solutions of (9), then by the principle of superposition, the general solution of the linear system can be written as

$$\bar{x}(t) = \sum_{k=1}^{n} \alpha_k e^{\lambda_k t} \bar{c}_k.$$
(13)

Our above discussion is based on the assumption that the eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ are distinct.

Example

Consider the following system of three first-order equations:

$$ar{x}' = \left[egin{array}{ccc} 0 & 1 & 0 \ 0 & 0 & 1 \ 6 & -11 & 6 \end{array}
ight] ar{x}.$$

Solution

The characteristic equation is given by $det(\lambda I - A) = 0$.

i.e.,

$$\begin{bmatrix} \lambda & -1 & 0 \\ 0 & \lambda & -1 \\ -6 & 11 & \lambda - 6 \end{bmatrix} = 0$$

which gives us

$$\lambda^3 - 6\lambda^2 + 11\lambda - 6 = 0.$$

We obtain the eigenvalues as

$$\lambda_1 = 1, \ \lambda_2 = 2, \ \lambda_3 = 3.$$

The corresponding eigenvectors \bar{c}_k , k = 1, 2, 3, can be evaluated, respectively, as

$$\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 2\\4\\8 \end{bmatrix}, \begin{bmatrix} 1\\3\\9 \end{bmatrix}.$$

System of linear equations

Thus, the general solution of the system is

$$\bar{x}(t) = \alpha_1 \begin{bmatrix} 1\\1\\1 \end{bmatrix} e^t + \alpha_2 \begin{bmatrix} 2\\4\\8 \end{bmatrix} e^{2t} + \alpha_3 \begin{bmatrix} 1\\3\\9 \end{bmatrix} e^{3t}$$

where α_1, α_2 and α_3 are arbitrary constants.

Example

Consider the following system of three first-order equations:

$$\bar{x}' = \left[egin{array}{cccc} 1 & 0 & 1 \ 0 & 1 & 0 \ 1 & 0 & 1 \end{array}
ight] ar{x}.$$

Solution

The characteristic equation is given by $det(\lambda I - A) = 0$. This gives us

$$(\lambda-1)^3+(\lambda-1)=0,$$

i.e., we get the eigenvalues as $\lambda_1=0, \lambda_2=1, \lambda_3=2.$

System of linear equations

The eigenvector corresponding to $\lambda_1 = 0$ is given by

$$\left[\begin{array}{rrrr} -1 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & -1 \end{array}\right] \left[\begin{array}{r} u_1 \\ u_2 \\ u_3 \end{array}\right] = 0,$$

where u_i , i = 1, 2, 3 are components \bar{c}_1 and we get $u_1 + u_3 = 0$, $u_2 = 0$.

Therefore, $\bar{c}_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$ is the eigenvector corresponding to $\lambda_1 = 0$.

The eigenvector corresponding to $\lambda_2 = 1$ is given by

$$\begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = 0,$$

where v_i , i = 1, 2, 3 are components \bar{c}_2 and we get $v_1 = 0$, $v_3 = 0$, $v_2 \neq 0$.

Therefore, $\bar{c}_2 = \begin{bmatrix} 0\\ 1\\ 0 \end{bmatrix}$ is the eigenvector corresponding to $\lambda_2 = 1$.

The eigenvector corresponding to $\lambda_3 = 2$ is given by

$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} = 0,$$

where w_i , i = 1, 2, 3 are components \overline{c}_3 and we get $w_1 - w_3 = 0$, $w_2 = 0$.

Therefore,
$$\bar{c}_3 = \begin{bmatrix} 1\\ 0\\ 1 \end{bmatrix}$$
 is the eigenvector corresponding to $\lambda_3 = 2$.

Hence, the linear independent solutions corresponding to the given problem are

$$x_1(t) = \overline{c}_1, \ x_2(t) = \overline{c}_2 e^t, \ x_3(t) = \overline{c}_3 e^{2t}.$$

Therefore, the general solution is given by

$$\bar{\mathbf{x}}(t) = \alpha_1 \mathbf{x}_1(t) + \alpha_2 \mathbf{x}_2(t) + \alpha_3 \mathbf{x}_3(t),$$

where α_1, α_2 and α_3 are arbitrary constants.

Equivalently,

the general solution of the system can be written as

$$ar{\mathbf{x}}(t) = lpha_1 \left[egin{array}{c} 1 \\ 0 \\ -1 \end{array}
ight] + lpha_2 \left[egin{array}{c} 0 \\ 1 \\ 0 \end{array}
ight] \mathbf{e}^t + lpha_3 \left[egin{array}{c} 1 \\ 0 \\ 1 \end{array}
ight] \mathbf{e}^{2t}.$$

Both examples considered here have distinct eigenvalues only. A similar procedure can be adopted even if the eigenvalues are repeated or are complex.