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Existence and uniqueness of solution

Picard’s Theorem

Let f (x , y) and ∂f /∂y be continuous functions of x and y on a closed rectangle R with sides

parallel to the axes. If (x0, y0) is any interior point of R, then there exists a number h > 0 with

the property that the initial value problem

y ′ = f (x , y), y(x0) = y0 (1)

has one and only one solution y = y(x) on the interval |x − x0| ≤ h.

Proof: The argument is fairly long and hence we will carry out the proof in a

number of steps.

First, we know that every solution of (1) is also a continuous solution of the integral equation

y(x) = y0 +

∫ x

x0

f [t, y(t)]dt, (2)

and conversely.
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Existence and uniqueness of solution

This enables us to conclude that (1) has a unique solution on an interval |x − x0| ≤ h if and only

if (2) has a unique continuous solution on the same interval.

Figure 1 : Geometrical view of the problem: The rectangle R′ contained in R
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Existence and uniqueness of solution

Previously, we have seen that the sequence of functions {yn(x)} defined by

y0(x) = y0,

y1(x) = y0 +
∫ x

x0
f (t, y0) dt,

y2(x) = y0 +
∫ x

x0
f [t, y1(t)] dt,

· · ·

yn(x) = y0 +
∫ x

x0
f [t, yn−1(t)] dt,

· · ·
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(3)

converges to a solution of (2).

We next observe that yn(x) is the n-th partial sum of the series of functions

y0(x) +
∞
∑

n=1

[yn(x)− yn−1(x)] = y0(x) + [y1(x)− y0(x)] + [y2(x)− y1(x)]

+ · · ·+ [yn(x) − yn−1(x)] + · · · . (4)

So, the convergence of the sequence (3) is equivalent to the convergence of this series in (4). In

order to complete the proof, we produce a number h > 0 that defines the interval |x − x0| ≤ h.
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Existence and uniqueness of solution

Then we show that, on this interval, the following statements are true:

(i) the series (4) converges to a function y(x),

(ii) y(x) is a continuous solution of (2), and

(iii) y(x) is the only continuous solution of (2).

The hypotheses of the theorem are used to produce the positive number h:

We have assumed that f (x , y) and ∂f /∂y are continuous functions on the rectangle R. But since

R is closed, in the sense that it includes its boundary, and bounded, so each of these functions is

necessarily bounded on R.

This means that there exist constants M and K such that

|f (x , y)| ≤ M, (5)
∣

∣

∣

∣

∂

∂y
f (x , y)

∣

∣

∣

∣

≤ K , (6)

for all points (x , y) in R.
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Existence and uniqueness of solution

We next observe that if (x , y1) and (x , y2) are distinct points in R with the same x coordinate,

then the mean value theorem guarantees that

|f (x , y1)− f (x , y2)| =

∣

∣

∣

∣

∂

∂y
f (x , s)

∣

∣

∣

∣

|y1 − y2| (7)

for some number s between y1 and y2.

It is clear from (6) and (7) that

|f (x , y1)− f (x , y2)| ≤ K |y1 − y2| (8)

for any points (x , y1) and (x , y2) in R (distinct or not) that lie on the same vertical line.

We now choose h to be any positive number such that

Kh < 1 (9)

and the rectangle R′ defined by the inequalities |x − x0| ≤ h and |y − y0| ≤ Mh is contained in R.
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Existence and uniqueness of solution

Figure 2 : Definition of Mh
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Existence and uniqueness of solution

Since (x0, y0) is an interior point of R, there is no difficulty in seeing that such an h exists. The

reasons for these apparently unreasonable requirements will of course emerge as the proof

continues.

From now onward, we confine our attention only to the interval |x − x0| ≤ h. In order to prove

(i), it suffices to show that the series

|y0(x)|+ |y1(x)− y0(x)|+ |y2(x)− y1(x)|+ · · ·+ |yn(x)− yn−1(x)|+ · · · (10)

converges; and to accomplish this, we estimate the terms |yn(x)− yn−1(x)|.

It is first necessary to observe that each of the functions yn(x) has a graph that lies in R′ and

hence in R. This is obvious for y0(x) = y0, so the points [t, y0(t)] are in R′, (5) yields

|f [t, y0(t)]| ≤ M, and

|y1(x) − y0| =

∣

∣

∣

∣

∫ x

x0

f [t, y0(t)]dt

∣

∣

∣

∣

≤ Mh,

which proves the statement for y1(x).
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Existence and uniqueness of solution

It follows in turn from this inequality that the points [t, y1(t)] are in R′, so |f [t, y1(t)]| ≤ M and

|y2(x) − y0| =

∣

∣

∣

∣

∫ x

x0

f [t, y1(t)]dt

∣

∣

∣

∣

≤ Mh.

Similarly,

|y3(x) − y0| =

∣

∣

∣

∣

∫ x

x0

f [t, y2(t)]dt

∣

∣

∣

∣

≤ Mh,

and so on.

Now for the estimates mentioned above, since a continuous function on a closed interval has a

maximum, and y1(x) is continuous, we can define a constant a by a = max|y1(x)− y0| and write

|y1(x)− y0(x)| ≤ a.

Next, the points [t, y1(t)] and [t, y0(t)] lie in R′, so (8) yields

|f [t, y1(t)] − f [t, y0(t)]| ≤ K |y1(t) − y0(t)| ≤ Ka.
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Existence and uniqueness of solution

We have

|y2(x)− y1(x)| =

∣

∣

∣

∣

∫ x

x0

(f [t, y1(t) − f [t, y0(t)])dt

∣

∣

∣

∣

≤ Kah = a(Kh).

Similarly,

|f [t, y2(t)] − f [t, y1(t)]| ≤ K |y2(t)− y1(t)| ≤ K 2ah.

Therefore,

|y3(x)− y2(x)| =

∣

∣

∣

∣

∫ x

x0

(f [t, y2(t) − f [t, y1(t)])dt

∣

∣

∣

∣

≤ (K 2ah)h = a(Kh)2.

By continuing in this manner, we find that

|yn(x)− yn−1(x)| ≤ a(Kh)n−1

for every n = 1, 2, . . .. Each term of the series (10) is therefore less than or equal to the

corresponding term of the series of constants

|y0|+ a+ a(Kh) + a(Kh)2 + · · ·+ a(Kh)n−1 + · · · .
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Existence and uniqueness of solution

However, (9) guarantees that this series converges and hence (10) converges by the comparison

test, and

(4) converges to a sum denoted by y(x), and yn(x) → y(x).

Since the graph of each yn(x) lies in R′, it is evident that the graph of y(x) also has this

property. This proves part (i), i.e., the series (4) converges to a function y(x).

Now we come to the proof of (ii).

The above argument shows not only that yn(x) converges to y(x) in the interval, but also that

this convergence is uniform. This means that by choosing n to be sufficiently large, we can make

yn(x) as close as we please to y(x) for all x in the interval.

More precisely, if

ε > 0 is given, then there exists a positive number n0 such that if n ≥ n0, we have

|y(x)− yn(x)| < ε for all x in the interval.
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Existence and uniqueness of solution

Since each yn(x) is clearly continuous, this uniformity of the convergence implies that the limit

function y(x) is also continuous. To prove that y(x) is actually a solution of (2), we must show

that

y(x)− y0 −

∫ x

x0

f [t, y(t)]dt = 0. (11)

But we know that

yn(x) − y0 −

∫ x

x0

f [t, yn−1(t)]dt = 0 (12)

Hence,

y(x)− y0 −

∫ x

x0

f [t, y(t)]dt = y(x)− yn(x) +

∫ x

x0

(f [t, yn−1(t) − f [t, y(t)])dt.

Hence, we obtain
∣

∣

∣

∣

y(x)− y0 −

∫ x

x0

f [t, y(t)]dt

∣

∣

∣

∣

≤ |y(x)− yn(x)|+

∣

∣

∣

∣

∫ x

x0

(f [t, yn−1(t) − f [t, y(t)])dt

∣

∣

∣

∣

.
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Existence and uniqueness of solution

Since the graph of y(x) lies in R′ and hence in R, (8) yields

∣

∣

∣

∣

y(x)− y0 −

∫ x

x0

f [t, y(t)]dt

∣

∣

∣

∣

≤ |y(x)− yn(x)|+ Kh max|yn−1(x)− y(x)|. (13)

More precisely,

the uniformity of the convergence of yn(x) to y(x) now implies that the right side of (13) can be

made as small as we please by taking n large enough. The left side of (13) must therefore be

zero, and the proof of (11) is complete. Consequently, part (ii) of the proof is done, i.e., y(x) is a

continuous solution of (2).

In other words,

we have shown that (2) has a solution y(x) which in turn implies that the IVP (1) has a solution

y(x). Our next task is to establish (iii), i.e.,

y(x) is the only solution for IVP (1).
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Existence and uniqueness of solution

In order to prove (iii), we assume that ȳ(x) is also a continuous solution of (2) on the interval

|x − x0| ≤ h, and we show that ȳ(x) = y(x) for every x in the interval.

Figure 3 : For showing uniqueness of solution
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Existence and uniqueness of solution

For the given argument, it is necessary to know that the graph of ȳ(x) lies in R′ and hence in R

and hence our first step is to establish this fact.

Let us suppose that the graph of ȳ(x) leaves R′. Then the properties of this function (continuity

and the fact that ȳ(x0) = y0) imply that there exists an x1 such that

|x1 − x0| < h, |ȳ(x1)− y0| = Mh, and |ȳ(x)− y0| < Mh if |x − x0| < |x1 − x0|.

It follows that
|ȳ(x)− y0|

|x1 − x0|
=

Mh

|x1 − x0|
>

Mh

h
= M.

However, by the mean value theorem there exists a number x∗ between x0 and x1 such that

|ȳ(x)− y0|

|x1 − x0|
= |ȳ ′(x∗)| = |f [x∗, ȳ ′(x∗)]| ≤ M

since the point [x∗, ȳ(x∗)] lies in R′.

This contradiction shows that no point with the properties of x1 can exist and hence the graph of

ȳ(x) lies in R′.
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Existence and uniqueness of solution

To complete the proof of (iii), we use the fact that ȳ(x) and y(x) are both solutions of (2) to

write

|ȳ(x)− y(x)| =

∣

∣

∣

∣

∫ x

x0

{f [t, ȳ(t)] − f [t, y(t)]} dt

∣

∣

∣

∣

.

Since the graphs of ȳ(x) and y(x) both lie in R′, (8) yields

|f (x , ȳ(x)) − f (x , y(x))| ≤ Kh max|ȳ(x)− y(x)|

⇒ |ȳ(x)− y(x)| ≤ Kh max|ȳ(x)− y(x)|,

so that

max|ȳ(x)− y(x)| ≤ Kh max|ȳ(x)− y(x)|.

This implies that max|ȳ(x)− y(x)| = 0, for otherwise we would have 1 ≤ Kh in contradiction to

(9). It follows that ȳ(x) = y(x) for every x in the interval |x − x0| ≤ h, and hence

Picard’s theorem is fully proved.

That is, we have established that (2) and in turn the IVP (1) has a unique solution.
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