MA 542 Differential Equations Lecture 15 (February 4, 2022)

Picard's Theorem

Let f(x, y) and $\partial f/\partial y$ be continuous functions of x and y on a closed rectangle R with sides parallel to the axes. If (x_0, y_0) is any interior point of R, then there exists a number h > 0 with the property that the initial value problem

$$y' = f(x, y), \ y(x_0) = y_0$$
 (1)

has one and only one solution y = y(x) on the interval $|x - x_0| \le h$.

Proof: The argument is fairly long and hence we will carry out the proof in a number of steps.

First, we know that every solution of (1) is also a continuous solution of the integral equation

$$y(x) = y_0 + \int_{x_0}^{x} f[t, y(t)] dt,$$
(2)

and conversely.

This enables us to conclude that (1) has a unique solution on an interval $|x - x_0| \le h$ if and only if (2) has a unique continuous solution on the same interval.

Figure 1 : Geometrical view of the problem: The rectangle R' contained in R

Existence and uniqueness of solution

Previously, we have seen that the sequence of functions $\{y_n(x)\}$ defined by

$$y_{0}(x) = y_{0},$$

$$y_{1}(x) = y_{0} + \int_{x_{0}}^{x} f(t, y_{0}) dt,$$

$$y_{2}(x) = y_{0} + \int_{x_{0}}^{x} f[t, y_{1}(t)] dt,$$

$$\dots$$

$$y_{n}(x) = y_{0} + \int_{x_{0}}^{x} f[t, y_{n-1}(t)] dt,$$

$$\dots$$
(3)

converges to a solution of (2).

We next observe that $y_n(x)$ is the *n*-th partial sum of the series of functions

$$y_{0}(x) + \sum_{n=1}^{\infty} [y_{n}(x) - y_{n-1}(x)] = y_{0}(x) + [y_{1}(x) - y_{0}(x)] + [y_{2}(x) - y_{1}(x)] + \dots + [y_{n}(x) - y_{n-1}(x)] + \dots$$
(4)

So, the convergence of the sequence (3) is equivalent to the convergence of this series in (4). In order to complete the proof, we produce a number h > 0 that defines the interval $|x - x_0| \le h$.

Then we show that, on this interval, the following statements are true: (i) the series (4) converges to a function y(x), (ii) y(x) is a continuous solution of (2), and (iii) y(x) is the only continuous solution of (2).

The hypotheses of the theorem are used to produce the positive number h:

We have assumed that f(x, y) and $\partial f/\partial y$ are continuous functions on the rectangle R. But since R is closed, in the sense that it includes its boundary, and bounded, so each of these functions is necessarily bounded on R.

This means that there exist constants M and K such that

$$|f(x,y)| \le M,\tag{5}$$

$$\left|\frac{\partial}{\partial y}f(x,y)\right| \le K,\tag{6}$$

for all points (x, y) in R.

We next observe that if (x, y_1) and (x, y_2) are distinct points in R with the same x coordinate, then the mean value theorem guarantees that

$$f(x, y_1) - f(x, y_2)| = \left|\frac{\partial}{\partial y}f(x, s)\right||y_1 - y_2|$$
(7)

for some number s between y_1 and y_2 .

It is clear from (6) and (7) that

$$|f(x, y_1) - f(x, y_2)| \le K|y_1 - y_2|$$
(8)

for any points (x, y_1) and (x, y_2) in R (distinct or not) that lie on the same vertical line.

We now choose h to be any positive number such that

and the rectangle R' defined by the inequalities $|x - x_0| \le h$ and $|y - y_0| \le Mh$ is contained in R.

(9)

Since (x_0, y_0) is an interior point of R, there is no difficulty in seeing that such an h exists. The reasons for these apparently unreasonable requirements will of course emerge as the proof continues.

From now onward, we confine our attention only to the interval $|x - x_0| \le h$. In order to prove (i), it suffices to show that the series

$$|y_0(x)| + |y_1(x) - y_0(x)| + |y_2(x) - y_1(x)| + \dots + |y_n(x) - y_{n-1}(x)| + \dots$$
(10)

converges; and to accomplish this, we estimate the terms $|y_n(x) - y_{n-1}(x)|$.

It is first necessary to observe that each of the functions $y_n(x)$ has a graph that lies in R' and hence in R. This is obvious for $y_0(x) = y_0$, so the points $[t, y_0(t)]$ are in R', (5) yields $|f[t, y_0(t)]| \le M$, and

$$|y_1(x)-y_0|=\left|\int_{x_0}^x f[t,y_0(t)]dt\right|\leq Mh,$$

which proves the statement for $y_1(x)$.

It follows in turn from this inequality that the points $[t, y_1(t)]$ are in R', so $|f[t, y_1(t)]| \leq M$ and

$$|y_2(x)-y_0|=\left|\int_{x_0}^x f[t,y_1(t)]dt\right|\leq Mh.$$

Similarly,

$$|y_3(x)-y_0|=\left|\int_{x_0}^x f[t,y_2(t)]dt\right|\leq Mh,$$

and so on.

Now for the estimates mentioned above, since a continuous function on a closed interval has a maximum, and $y_1(x)$ is continuous, we can define a constant *a* by $a = \max|y_1(x) - y_0|$ and write

$$|y_1(x)-y_0(x)|\leq a.$$

Next, the points $[t, y_1(t)]$ and $[t, y_0(t)]$ lie in R', so (8) yields

 $|f[t, y_1(t)] - f[t, y_0(t)]| \le K |y_1(t) - y_0(t)| \le Ka.$

We have

$$|y_2(x) - y_1(x)| = \left| \int_{x_0}^x (f[t, y_1(t) - f[t, y_0(t)]) dt \right| \le Kah = a(Kh).$$

Similarly,

$$|f[t, y_2(t)] - f[t, y_1(t)]| \le K |y_2(t) - y_1(t)| \le K^2 ah.$$

Therefore,

$$|y_3(x) - y_2(x)| = \left| \int_{x_0}^x (f[t, y_2(t) - f[t, y_1(t)]) dt \right| \le (K^2 ah)h = a(Kh)^2.$$

By continuing in this manner, we find that

$$|y_n(x) - y_{n-1}(x)| \le a(Kh)^{n-1}$$

for every n = 1, 2, ... Each term of the series (10) is therefore less than or equal to the corresponding term of the series of constants

 $|y_0| + a + a(Kh) + a(Kh)^2 + \cdots + a(Kh)^{n-1} + \cdots$

However, $\left(9\right)$ guarantees that this series converges and hence $\left(10\right)$ converges by the comparison test, and

(4) converges to a sum denoted by y(x), and $y_n(x) \rightarrow y(x)$.

Since the graph of each $y_n(x)$ lies in R', it is evident that the graph of y(x) also has this property. This proves part (i), i.e., the series (4) converges to a function y(x).

Now we come to the proof of (ii).

The above argument shows not only that $y_n(x)$ converges to y(x) in the interval, but also that this convergence is uniform. This means that by choosing *n* to be sufficiently large, we can make $y_n(x)$ as close as we please to y(x) for all x in the interval.

More precisely, if

 $\epsilon > 0$ is given, then there exists a positive number n_0 such that if $n \ge n_0$, we have $|y(x) - y_n(x)| < \epsilon$ for all x in the interval.

Since each $y_n(x)$ is clearly continuous, this uniformity of the convergence implies that the limit function y(x) is also continuous. To prove that y(x) is actually a solution of (2), we must show that

$$y(x) - y_0 - \int_{x_0}^{x} f[t, y(t)] dt = 0.$$
(11)

But we know that

$$y_n(x) - y_0 - \int_{x_0}^x f[t, y_{n-1}(t)] dt = 0$$
(12)

Hence,

$$y(x) - y_0 - \int_{x_0}^x f[t, y(t)]dt = y(x) - y_n(x) + \int_{x_0}^x (f[t, y_{n-1}(t) - f[t, y(t)])dt.$$

Hence, we obtain

$$|y(x) - y_0 - \int_{x_0}^x f[t, y(t)] dt \le |y(x) - y_n(x)| + \left| \int_{x_0}^x (f[t, y_{n-1}(t) - f[t, y(t)]) dt \right|.$$

Since the graph of y(x) lies in R' and hence in R, (8) yields

$$\left| y(x) - y_0 - \int_{x_0}^x f[t, y(t)] dt \right| \le |y(x) - y_n(x)| + Kh \max |y_{n-1}(x) - y(x)|.$$
(13)

More precisely,

the uniformity of the convergence of $y_n(x)$ to y(x) now implies that the right side of (13) can be made as small as we please by taking *n* large enough. The left side of (13) must therefore be zero, and the proof of (11) is complete. Consequently, part (ii) of the proof is done, i.e., y(x) is a continuous solution of (2).

In other words,

we have shown that (2) has a solution y(x) which in turn implies that the IVP (1) has a solution y(x). Our next task is to establish (iii), i.e., y(x) is the only solution for IVP (1).

Existence and uniqueness of solution

In order to prove (iii), we assume that $\bar{y}(x)$ is also a continuous solution of (2) on the interval $|x - x_0| \le h$, and we show that $\bar{y}(x) = y(x)$ for every x in the interval.

Figure 3 : For showing uniqueness of solution

For the given argument, it is necessary to know that the graph of $\bar{y}(x)$ lies in R' and hence in R and hence our first step is to establish this fact.

Let us suppose that the graph of $\bar{y}(x)$ leaves R'. Then the properties of this function (continuity and the fact that $\bar{y}(x_0) = y_0$) imply that there exists an x_1 such that $|x_1 - x_0| < h$, $|\bar{y}(x_1) - y_0| = Mh$, and $|\bar{y}(x) - y_0| < Mh$ if $|x - x_0| < |x_1 - x_0|$.

It follows that

$$\frac{\bar{y}(x)-y_0|}{|x_1-x_0|} = \frac{Mh}{|x_1-x_0|} > \frac{Mh}{h} = M.$$

However, by the mean value theorem there exists a number x^* between x_0 and x_1 such that

$$\frac{|\bar{y}(x) - y_0|}{|x_1 - x_0|} = |\bar{y}'(x^*)| = |f[x^*, \bar{y}'(x^*)]| \le M$$

since the point $[x^*, \bar{y}(x^*)]$ lies in R'.

This contradiction shows that no point with the properties of x_1 can exist and hence the graph of $\bar{y}(x)$ lies in R'.

To complete the proof of (iii), we use the fact that $\bar{y}(x)$ and y(x) are both solutions of (2) to write

$$|\bar{y}(x) - y(x)| = \left| \int_{x_0}^x \{f[t, \bar{y}(t)] - f[t, y(t)]\} dt \right|.$$

Since the graphs of $\bar{y}(x)$ and y(x) both lie in R', (8) yields

$$\begin{aligned} |f(x,\bar{y}(x)) - f(x,y(x))| &\leq Kh \max |\bar{y}(x) - y(x)| \\ \Rightarrow |\bar{y}(x) - y(x)| &\leq Kh \max |\bar{y}(x) - y(x)|, \end{aligned}$$

so that

$$\max|\bar{y}(x) - y(x)| \le Kh \max|\bar{y}(x) - y(x)|.$$

This implies that $\max |\bar{y}(x) - y(x)| = 0$, for otherwise we would have $1 \le Kh$ in contradiction to (9). It follows that $\bar{y}(x) = y(x)$ for every x in the interval $|x - x_0| \le h$, and hence Picard's theorem is fully proved.

That is, we have established that (2) and in turn the IVP (1) has a unique solution.