
MA 542 Differential Equations

Lecture 14

(February 3, 2022)

Differential Equations 1 / 14



Existence and uniqueness of solution

We have learnt procedures of solving differential equations. But we have not yet looked into the

qualitative theory of differential equations. Given a problem, we need to check whether there

exists a solution for this differential equation and if it exists, whether it is unique.

Well-posed problem

A problem involving a differential equation is called well-posed if the following are satisfied:

1 A solution exists,

2 the solution is unique, and

3 the solution depends continuously on the given input.

Otherwise it is called an ill-posed problem.

Preliminaries

Here we consider a class of functions satisfying the Lipschitz condition which plays an important

role in the qualitative theory of differential equations.
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Existence and uniqueness of solution

Definition

A function f (x , y) defined in a region D ⊂ R
2 is said to satisfy a Lipschitz condition in the

dependent variable y with a Lipschitz constant K if the inequality

|f (x , y1)− f (x , y2)| ≤ K |y1 − y2| (1)

holds whenever (x , y1) and (x , y2) are in D. In such a case, we denote f to be a member of the

class Lip (D,K).

As a consequence of definition (1), a function f (x , y) satisfies Lipschitz condition if and only if

there exists a constant K > 0 such that

|f (x , y1)− f (x , y2)|

|y1 − y2|
≤ K , y1 6= y2,

whenever (x , y1) and (x , y2) belong to D.
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Existence and uniqueness of solution

Theorem

Let f (x , y) be a continuous function defined over a rectangle

R = {(x , y) : |x − x0| ≤ p, |y − y0| ≤ q}. Here p, q are some positive real numbers. Let
∂f

∂y
be

defined and continuous on R. Then f (x , y) satisfies Lipschitz condition in R.

Proof:

Since
∂f

∂y
is continuous on R, there exists a positive constant A such that

∣

∣

∣

∣

∂f

∂y
(x , y)

∣

∣

∣

∣

≤ A (2)

for all (x , y) in R.

Let (x , y1) and (x , y2) be any two points in R. Then by the mean value theorem of differential

calculus, there exists a number s which lies between y1 and y2 such that

f (x , y1)− f (x , y2) =
∂f

∂y
(x , s)(y1 − y2).
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Existence and uniqueness of solution

Since the point (x , s) lies in R and the inequality (2) holds, it is clear that

∣

∣

∣

∣

∂f

∂y
(x , s)

∣

∣

∣

∣

≤ A.

Hence, we have

|f (x , y1)− f (x , y2)| ≤ A|y1 − y2|,

whenever (x , y1) and (x , y2) are in R, which completes the proof.

Example

Let f (x , y) = |y | on the unit square R around the origin, namely,

R = {(x , y) : |x | ≤ 1, |y | ≤ 1}.

The partial derivative of f at (x , 0) fails to exist but f satisfies Lipschitz condition in y on R with

Lipschitz constant K = 1.
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Existence and uniqueness of solution

The following example shows that there exist functions which do not satisfy the Lipschitz

condition.

Example: Let f (x , y) = y1/2 be defined on the rectangle

R = {(x , y) : |x | ≤ 2, |y | ≤ 2}.

Justification

In this case, f does not satisfy the inequality (1) in R. This is because

f (x , y)− f (x , 0)

y − 0
= y−1/2

is unbounded in R, since it can be made as large as possible by choosing y close to zero.

The Method of Successive Approximations

From the methods of solving differential equations, we have observed that only a few types of

differential equations can be solved explicitly in terms of elementary functions, and a few more by

the power series method. Still many differential equations fall outside these categories and we do

not have any means of solving them. Approximation is the only way out.
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Existence and uniqueness of solution

Consider the following initial value problem:

y ′ = f (x , y), y(x0) = y0, (3)

where f (x , y) is an arbitrary function defined and continuous in some neighbourhood of the point

(x0, y0).

Figure 1 : The curve y = y(x) passing through the point (x0, y0)
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Existence and uniqueness of solution

From the point of view of geometry,

our aim is to devise a method for constructing a function y = y(x) whose graph passes through

the point (x0, y0) and that satisfies the differential equation y ′ = f (x , y) in some neighbourhood

of x0.

We replace the initial value problem (3) by the equivalent integral equation

y(x) = y0 +

∫ x

x0

f [t, y(t)]dt. (4)

(It is a simple case of integration of the equation in (3) and applying the initial condition.)

Equation (4) is called an integral equation because the unknown function y also occurs under the

integral sign.
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Existence and uniqueness of solution

To see that (3) and (4) are equivalent, suppose that y(x) is a solution of (3). Then y(x) is

automatically continuous and the right side of

y ′ = f [x , y(x)]

is a continuous function of x ; and when we integrate this from x0 to x and use y(x0) = y0, the

result is (4).

We adopt the process of iteration.

We begin with a rough approximation to a solution and improve it step by step by applying a

repeated operation which is supposed to take us closer to the exact solution.

The main advantage that (4) has over (3) is that the integral equation provides a convenient

mechanism for carrying out the process.
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Existence and uniqueness of solution

A rough approximation to a solution is given by the constant function y0(x) = y0, which is simply

a horizontal straight line through the point (x0, y0). Insert this expression in the right side of (4)

in order to obtain a better approximation y1(x):

y1(x) = y0 +

∫ x

x0

f (t, y0) dt.

The next step is to use y1(x) to generate another, and perhaps a better approximation y2(x) in

the same way:

y2(x) = y0 +

∫ x

x0

f [t, y1(t)] dt.

After repeating this process for n times, we reach an approximation of the following form:

yn(x) = y0 +

∫ x

x0

f [t, yn−1(t)] dt. (5)

This procedure is called Picard’s method of successive approximations. We will look at the

convergence of yn(x) when n → ∞.
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Existence and uniqueness of solution

Consider the following simple example:

y ′ = y , y(0) = 1,

which has the obvious solution y(x) = ex and here f (x , y) = y .

The equivalent integral equation of above IVP is

y(x) = 1 +

∫ x

0
y(t) dt

and (5) becomes

yn(x) = 1 +

∫ x

x0

yn−1(t) dt

With y0(x) = 1, it is easy to see that

y1(x) = 1 +

∫ x

0
dt = 1 + x , y2(x) = 1 +

∫ x

0
(1 + t)dt = 1 + x +

x2

2
,

y3(x) = 1 +

∫ x

0
(1 + t + t2/2)dt = 1 + x +

x2

2!
+

x3

3!
.
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Existence and uniqueness of solution

Continuing this way, in general

yn(x) = 1 + x +
x2

2!
+

x3

3!
+ · · ·+

xn

n!
.

We can clearly observe that the successive approximations do really converge to the exact

solution (yn(x) → y(x) = ex ) as the continuation of right side of the above is nothing but the

power series expansion of ex .

Example

Now consider the following first order linear equation

y ′ = x + y , y(0) = 1,

whose exact solution is y(x) = 2ex − x − 1 and here f (x , y) = x + y .
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Existence and uniqueness of solution

The equivalent integral equation is

y(x) = 1 +

∫ x

0
[t + y(t)]dt

and (5) gives

yn(x) = 1 +

∫ x

0
[t + yn−1(t)]dt.

With y0(x) = 1, Picard’s method yields

y1(x) = 1 +

∫ x

0
(t + 1)dt = 1 + x +

x2

2!
,

y2(x) = 1 +

∫ x

0
(1 + 2t + t2/2!)dt = 1 + x + x2 +

x3

3!
,

y3(x) = 1 +

∫ x

0
(1 + 2t + t2 + t3/3!)dt = 1 + x + x2 +

x3

3
+

x4

4!
.
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Existence and uniqueness of solution

Similarly

y4(x) = 1 + x + x2 +
x3

3
+

x4

3 · 4
+

x5

5!
.

Continuing this way, in general

yn(x) = 1 + x + 2

(

x2

2!
+

x3

3!
+ · · ·+

xn

n!

)

+
xn+1

(n + 1)!
+ · · · ,

which evidently converges to (as n → ∞)

y(x) = 1 + x + 2(ex − x − 1) + 0 = 2ex − x − 1.

The real power of Picard’s method lies mainly in the theory of differential equations − not in

actually finding solutions, but in establishing, under very general conditions, that an initial value

problem has a solution and that this solution is unique.

Therefore, our next task is to, given an IVP, find out what are the conditions required to ensure

that the IVP has a solution which is unique. This involves rigorous analysis and it is a fairly long

process. For convenience, we will deal with only a first-order IVP but the analysis involved will be

similar for all order IVPs.
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