
MA 542 Differential Equations

Lecture 13

(February 1, 2022)
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Legendre Polynomials

Generating function of Legendre polynomial

The function G(x , t) =
1√

1− 2xt + t2
is the generating function with

1√
1− 2xt + t2

= P0(x) + P1(x)t + P2(x)t
2 + · · ·+ Pn(x)t

n + · · ·

=
∞
∑

n=0

tnPn(x), |t| < 1. (1)

Many important properties and results of Legendre polynomials can be obtained from the above

relation.

Put x = 1 in (1):

(1 − t)−1 =
∞
∑

n=0

tnPn(1).

Equating the coefficient of tn from both sides

Pn(1) = 1. (2)
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Legendre Polynomials

Similarly, putting x = −1 in (1):

Pn(−1) = (−1)n. (3)

Now, putting x = 0 in (1):

(1 + t2)−1/2 =
∞
∑

n=0

tnPn(0).

which gives

1− 1

2
t2 +

1 · 3
22 · 2!

t4 − 1 · 3 · 5
23 · 3!

t6 + · · · =
∞
∑

n=0

tnPn(0).

In above, since all powers of t are even, equating the coefficients of t2n−1,

P2n−1(0) = 0. (4)

The above result is also obvious from the expressions of P1(x),P3(x) etc. each of which has all

terms having odd powers of x and no constant term.
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Legendre Polynomials

Next, equating the coefficients of t2n,

P2n(0) = (−1)n
1 · 3 · · · (2n − 1)

2nn!

= (−1)n
(2n)!

22n(n!)2
(by multiplying numerator and denominator by 2 · 4 · · · 2n). (5)

Look at the expressions of P0(x),P2(x),P4(x) etc. each of which has a constant term in addition

to terms containing even powers of x .

Next differentiate (1) with respect to t to get

(1− 2xt + t2)−3/2(x − t) =
∞
∑

n=1

ntn−1Pn(x),

which can be written as

(x − t)
∞
∑

n=0

tnPn(x) = (1− 2xt + t2)
∞
∑

n=1

ntn−1Pn(x).
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Legendre Polynomials

Equating the coefficients of tn

xPn(x)− Pn−1(x) = (n + 1)Pn+1(x)− 2xnPn(x) + (n − 1)Pn−1(x)

⇒ (n + 1)Pn+1(x)− (2n + 1)xPn(x) + nPn−1(x) = 0. (6)

Equation (6) gives the recurrence relation between three consecutive Legendre polynomials

Pn−1(x),Pn(x) and Pn+1(x) for all n.

Results: P
′

n(1) =
n(n+1)

2 , P
′

n(−1) = (−1)n+1 n(n+1)
2

Proof:

Since Pn(x) satisfies Legendre equation, we can write

(1 − x2)P
′′

n (x)− 2xP
′

n(x) + n(n + 1)Pn(x) = 0. (7)
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Legendre Polynomials

Taking x = 1 in (7), we get 2P
′

n(1) = n(n + 1)Pn(1). Since Pn(1) = 1, we get

P
′

n(1) =
n(n + 1)

2
. (8)

Next, by taking x = −1 in (7), 2P
′

n(−1) = −n(n + 1)Pn(−1). Since Pn(−1) = (−1)n, we get

P
′

n(−1) = (−1)n+1 n(n + 1)

2
. (9)
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Legendre Polynomials

Orthogonality of Legendre Polynomials

∫ 1

−1
Pm(x)Pn(x)dx =

{

0, if m 6= n,
2

2n+1
, if m = n.

(10)

Proof:

Recall Legendre equation

(1 − x2)y
′′ − 2xy

′

+ n(n + 1)y = 0. (11)

Let Pn(x) and Pm(x) (m 6= n) be two distinct Legendre polynomials which obviously satisfy (11).

Subsequently,

(1− x2)P
′′

n (x)− 2xP
′

n(x) + n(n + 1)Pn(x) = 0, (12)

(1− x2)P
′′

m (x)− 2xP
′

m(x) +m(m + 1)Pm(x) = 0. (13)
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Legendre Polynomials

Multiplying (12) by Pm(x) and (13) by Pn(x) and subtracting

(1− x2)[PmP
′′

n − PnP
′′

m ]− 2x [PmP
′

n − PnP
′

m] + [n(n + 1)−m(m + 1)]PmPn = 0.

This can be written as

d

dx

{

(1 − x2)[PmP
′

n − PnP
′

m]
}

= [(m− n)(m + n + 1)]PnPm. (14)

Integrating both sides of (14) with respect to x from −1 to 1

{

(1− x2)[PmP
′

n − PnP
′

m]
}1

−1
= (m − n)(m + n + 1)

∫ 1

−1
Pn(x)Pm(x)dx . (15)
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Legendre Polynomials

The expression on the left hand side vanishes at both limits and since m 6= n, we must have

∫ 1

−1
Pn(x)Pm(x)dx = 0, (16)

which proves the first part of (10).

Now for proving the second part of (10), i.e., when m = n, consider the following

based on generating function.

Since both Pn(x) and Pm(x) have the same generating function, we can write

1√
1− 2xt + t2

=
∞
∑

n=0

tnPn(x), (17)

1√
1− 2xt + t2

=
∞
∑

m=0

tmPm(x). (18)
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Legendre Polynomials

Multiplying (17) and (18),

(1 − 2xt + t2)−1 =
∞
∑

n=0

∞
∑

m=0

tn+mPn(x)Pm(x). (19)

Integrating both sides of (19) with respect to x from −1 to 1,

∫ 1

−1

dx

1− 2xt + t2
=

∞
∑

n=0

∞
∑

m=0

{∫ 1

−1
Pn(x)Pm(x)dx

}

tn+m . (20)

We know that for m 6= n,

∫ 1

−1
Pn(x)Pm(x)dx = 0 and subsequently the double summation in

(20) reduces to
∞
∑

n=0

{∫ 1

−1
(Pn(x))

2dx

}

t2n.
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Legendre Polynomials

On the other hand

∫ 1

−1

dx

1− 2xt + t2
= − 1

2t

[

ln(1− 2xt + t2)
]1

−1
=

1

t
[ln(1 + t) − ln(1 − t)]

=
1

t

{(

t − t2

2
+

t3

3
− · · ·

)

−
(

−t − t2

2
− t3

3
− · · ·

)}

= 2

{

1 +
t2

3
+

t4

5
+ · · ·

}

=
∞
∑

n=0

2

2n + 1
t2n.

Therefore, (20) gives

∞
∑

n=0

{∫ 1

−1
(Pn(x))

2dx

}

t2n =
∞
∑

n=0

2

2n + 1
t2n. (21)
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Legendre Polynomials

Equating the coefficients of t2n from both sides of (21),
∫ 1

−1
(Pn(x))

2dx =
2

2n + 1
. (22)

which completes the proof of (10), i.e.,

∫ 1

−1
Pm(x)Pn(x)dx =

{

0, if m 6= n,
2

2n+1
, if m = n.

(23)

If we write x = cos θ, the orthogonality property of Legendre polynomials can be

written as
∫ π

0
Pm(cos θ)Pn(cos θ) sin θ dθ =

{

0, if m 6= n,
2

2n+1
, if m = n.

(24)

Orthogonality property of Legendre polynomials in either form is very useful in

many applications.
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Legendre Polynomials

Legendre series

We can write the various powers of x in terms of some Legendre polynomials as follows:

1 = P0(x), x = P1(x), x2 =
1

3
+

2

3
P2(x) =

1

3
P0(x) +

2

3
P2(x)

x3 =
3

5
x +

2

5
P3(x) =

3

5
P1(x) +

2

5
P3(x)

Hence it follows that any third degree polynomial p(x) = b0 + b1x + b2x
2 + b3x

3

can be written as

p(x) = b0P0(x) + b1P1(x) + b2

[

1

3
P0(x) +

2

3
P2(x)

]

+ b3

[

3

5
P1(x) +

2

5
P3(x)

]

=

(

b0 +
b2

3

)

P0(x) +

(

b1 +
3b3

5

)

P1(x) +
2b2

3
P2(x) +

2b2

5
P3(x)

=
3
∑

n=0

anPn(x)
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Legendre Polynomials

More generally, since Pn(x) is a polynomial of degree n for every positive integer n, it is possible

that xn can be expressed as linear combinations of P0(x),P1(x),P2(x), . . . ,Pn(x) (for even n,

they are P0(x),P2(x),P4(x), . . . ,P2n(x) and for odd n, they are

P1(x),P3(x),P5(x), . . . ,P2n−1(x)) so that any polynomial p(x) of degree k has an expression of

the form

p(x) =
K
∑

n=0

anPn(x),

where K = k/2 if k is even and K = (k − 1)/2 if k is odd.

Actually an arbitrary function f (x) can be expanded in terms of Legendre polynomials:

f (x) =
∞
∑

n=0

anPn(x), (25)

which is known as Legendre series.
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Legendre Polynomials

In order to find the unknowns an’s, we proceed in the following way:

Multiply (25) by Pm(x) and integrate term by term between −1 and 1

∫ 1

−1
f (x)Pm(x)dx =

∞
∑

n=0

an

∫ 1

−1
Pn(x)Pm(x)dx

= am

∫ 1

−1
{Pm(x)}2dx

=
2am

2m + 1
(due to the orthogonality of Legendre polynomials).

This gives us (by changing m to n)

an = (n +
1

2
)

∫ 1

−1
f (x)Pn(x)dx . (26)
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Legendre Polynomials

Legendre polynomials in numerical analysis

If we recall Gaussian quadrature for computing integrals numerically, it will be interesting to note

how the zeros of Legendre polynomials determine the different Gaussian quadrature formulas.

While trying to integrate a function f (x) between −1 and 1, we come across the

following formulas:

∫ 1

−1
f (x)dx

.
= 2f (0), (27)

∫ 1

−1
f (x)dx

.
= f

(

− 1√
3

)

+ f

(

1√
3

)

, (28)

∫ 1

−1
f (x)dx

.
=

[

5

9
f

(

−
√

3

5

)

+
8

9
f (0) +

1

9
f

(

√

3

5

)]

. (29)

We notice that the evaluation of the integrals is nothing but finding the values of the integrand at

certain points, viz., 0;± 1√
3
and 0,±

√

3
5
, which are the zeros of the Legendre polynomials

P1(x),P2(x) and P3(x), respectively.
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Legendre Polynomials

Similarly the zeros of higher order Legendre polynomials are used for higher order Gaussian

quadrature though very infrequently.

In general

in order to evaluate

∫ b

a

f (x)dx by Gaussian quadrature, we make the substitution

x = (b − a)ξ/2 + (b + a)/2 so that

∫ b

a

f (x)dx =
b − a

2

∫ 1

−1
f [(b − a)ξ/2 + (b + a)/2]dξ. (30)

The n point formula is given by

∫ b

a

f (x)dx ≈ b − a

2

n
∑

i=1

wi f [(b − a)ξi/2 + (b + a)/2], (31)

where the weights wi are given by

wi =
2

(1 − ξ2
i
)[P′

n(ξi )]
2
, with ξi denoting a zero of Pn(x). (32)
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Power series

Power series method is a powerful method for finding solution to some classes of second-order

ordinary differential equations. Here we have discussed only Bessel functions and Legendre

polynomials.

Power series method can be appropriately used to find solutions of some other special functions or

orthogonal polynomials such as

Laguerre polynomials

Hermite polynomials

Tchebyshev polynomials

Modified Bessel functions

Associated Legendre polynomials

All of above have significant importance in mathematical physics and numerical analysis.
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