MA 542 Differential Equations
Lecture 12

(January 28, 2022)




Bessel Functions

Orthogonal Property

If X\, are eigenvalues of Bessel function Jy(Anx) of a specific order p, then

0, m # n,
YO}z, m=n.

Let y1(x) = Ju(Anx) and ys(x) = Ju(Amx) be two solutions of Bessel's equation for positive A,
and Ap. Then yi(x) and y»(x) satisfy

1
/0 xJp(Anx)du (Amx)dx = { (1)

" 1 ’ 2
i t-yn+ (/\5 - “—2> y1=0, (2
X X

" 1 uZ
v2 vt (Aﬁ - ;) y2 =0. (3)

v

Multiply (2) and (3), respectively, by y»(x) and yi(x), then subtract the results and multiply by x
to get

d , ,
o [X(y1y2 — }’2)’1)] = (A2, — X)xy1ys. (4)
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Bessel Functions

Integrate (4) with respect to x from x =0 to x =1 to get

1
7 7 1
(02, - A2) /0 xyrysdx = [x(viys = vyl 5)

The expression on right vanishes at both x =0 and x = 1. J

Therefore if m and n are distinct, i.e., A\, and A\, are distinct, then
1
/ O O — 0, (6)
0

which is the first part of (1).

1
Next we are required to evaluate the integral / xJp(Anx)dp (Amx)dx for m = n.
0
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Bessel Functions

Multiplying (2) by 2x2y1, and adjusting the terms, we get

d
o (X n ) + dx (A%XZ}QZ) - 2>\1><}’1 - (H ) 0.

Integrate from x =0 to x =1, we get

1 12 1
2/\5/0 xyfdx = [Py + (A5 — p?)yi - @)

For x = 0, the expression in brackets vanishes and since y{(l) = )\nJ;(A,,), (7) gives

1 , 2
[ < n0re = 208 + 3 (155 ) GG

Using some earlier relations, it results in

1 ’
[ )P = LGP = 5 U (an)) (®)

which gives the second part of (1), and (6) and (8) together give the orthogonality result (1).
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Legendre Polynomials

Another important equation which gives rise to special functions is Legendre equation: J

(1 -x%)y" —2xy' +n(n+1)y =0. (9)

and its solutions are known as Legendre polynomials.

It is obvious that x = %1 are regular singular points of Legendre equation. J

We use regular power series method (Frobenius series is not required) to find a series solution J

since the origin is an ordinary point in this case.

Because the region of convergence for such a series is |x| < 1, the infinite series will be
convergent for —1 < x < 1.
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Legendre Polynomials

Origin
When we try to solve Laplace’s equation in spherical coordinates (r, 6,1), we come across three
ordinary differential equations one of which (in ) is

17 ! 2
-2y — 2% + |:n(n+1)— 1TX2}y:07 (10)

y = f(x) is a function of § with x = cos 6.

This equation is known as associated Legendre equation, where m and n are constants with

integral values, which arise while solving Laplace's equation by separation of variables. Its

solutions are known as associated Legendre polynomials, denoted by P;".

When m = 0, equation (10) reduces to Legendre equation (9). )
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Legendre Polynomials

Assume a series solution of the form:
o0
y = Z axk (11)
k=0

Using (11) in (9), we get

i agk(k — 1)xk=2 4 i ag_a[n(n+1) —2(k—2) — (k—2)(k=3)]x*2=0. (12)
k=0 k=2

v
Recurrence relation:

_ _[n(n+1) —2(k = 2) — (k= 2)(k = 3)]ak—2
k(k —1) ’ =

\

[(n—k+2)(n+k—1)]ax2

ag = —

= . k>2. (13)
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Legendre Polynomials

The coefficients can be expressed in terms of either ag or a; as follows:

5 = _n(n2-:— l)ao, a3:_(n—l:)J)(!n-|—2)
_(n— ?('37+3)a _ +"(" —2)('744!- 1)(n+3) 2
(=30t (=10 -Hn+2)(n+4)

5.4 B

1

A complete solution can be written in the form

y = a0{1_n(n2—!|—1)x2+n(n—2)(n4—!|—1)(n—|—3)x4_“.}
" al|:X_(n—1:)5(!n+2)x3+(n—1)(n—3;(!n+2)(n+4)x5_“.}- (14)

V.

If nis even, the first series terminates after certain terms and if n is odd, the second series
terminates after certain terms. In either case, the series which reduces to a finite sum is known as

a Legendre polynomial or a spherical harmonic of order n, denoted by Pn(x).
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Legendre Polynomials

To obtain the standard form of Legendre polynomial, we substitute the values of ag and aj in
such a way that the coefficients of the highest power of x in each series is equal to
(2n)!
21(n!)2
v
These values for ag and a; are
|
o = ()
© = O ap
m = (cpene_(FDU
2[5

The resulting general formula is

N
3 (=1)k(2n — 2k)! e
Pn(X)_Z2nk!(n_k)!(n—2k)!x ”

k=0

; (15)

where 1
N:ﬂ, n even; N:n—7 n odd.
2 2
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Legendre Polynomials

This formula gives the first few Legendre polynomials as:
1 1,4
Po(x) = 1, Pi(x) =x, P(x) = ( X2 —1), P3(x) = 2(5x — 3x),
1
Pi(x) = §(35x4 —30x2 4 3), Ps(x) = §(63x5 — 70x3 + 15x),
1 1
Ps(x) = —(231x6 — 315x* 4 105x% — 5), P7(x) = E(429><7 — 693x° + 315x3 — 35x),
Ps(x) = o8 (6435x — 12012x5 + 6930x* — 1260x2 + 35).

A complete solution of (9) can be written as

y(x) = APy(x) + BQn(x)

where the Legendre polynomial of second kind Q(x) can be obtained from P,(x) as

dx
Qn(x) = Pn(x) / 2= DP.()P o

which is not bounded near x = +1.

V.
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Legendre Polynomials

Legendre equation of order zero (n = 0) can be written as

(1-x3)y" -2 =0, (18)
which has the compact form
d dy
—la-xZ| =o. 19
= la-0g] (19)

Integrating (19):

(1- x%ﬂ = A (20)

A
/dy:/l_xzdx.

This gives the solution as

1, [1+
y:AEIn(lii)JrB. (21)
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Legendre Polynomials

We know that, being of second order, every Legendre equation has two linearly

independent solutions with two arbitrary constants which are A and B here.

Therefore, here we denote the linearly independent solutions of (18) as

Po(x) =1,  Qo(x) = %In (ii) : (22)

It may be noted that Qp(x) diverges at x = 1. )

As it has already been observed, for the general case of n # 0, power series solution is employed
to solve Legendre equation. J

In most of the cases, since solutions bounded for x — +1 are required, it is seen that the solution

of a specific Legendre equation of order n tends to contain only Pp(x).
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Legendre Polynomials
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Figure 1 : Graphs of some Legendre polynomials
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Legendre Polynomials

Legendre polynomials in terms of 6:

elf 4 o—if
By substituting x = cos 6§ = — Legendre polynomial can also be expressed as
K
_ (2n)!(2k — 2n)!(2 cos(k — 2n)0)
Puleos) =2 e (- e 29
n=0

where B k—1
K = —, k even; K:;7 k odd.
2 2

The above expression is required for some problems in which it becomes essential that Legendre

polynomial be expressed in terms of 8. For such problems, usually in three-dimensional spherical

problems, the solutions remain in terms of 6.
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Legendre Polynomials

Rodrigues’ Formula:

1 d”

Pox) = 2ot dxn

(x*=1)", n=0,1,2,3,...

Proof:

The binomial expansion of (x2 — 1) is given by

z n! e
(XZ _ 1)n — ;(_l)km)g 2k.

Differentiating it n times gives
d" 2 1\n _ u _1\k n!(2n_2k)! n—2k
g V"= ;( R TP T T TR (24)

where the last term is a constant and N = n/2 when n is even and N = (n — 1)/2 when n is odd.

Now on comparing (15) and (24), the desired result can be obtained. )
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