
MA 542 Differential Equations

Lecture 12

(January 28, 2022)
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Bessel Functions

Orthogonal Property

If λn are eigenvalues of Bessel function Jµ(λnx) of a specific order µ, then

∫ 1

0
xJµ(λnx)Jµ(λmx)dx =

{

0, m 6= n,
1
2
{Jµ+1(λn)}2, m = n.

(1)

Proof:

Let y1(x) = Jµ(λnx) and y2(x) = Jµ(λmx) be two solutions of Bessel’s equation for positive λn

and λm. Then y1(x) and y2(x) satisfy

y
′′

1 +
1

x
y
′

1 +

(

λ2n −
µ2

x2

)

y1 = 0, (2)

y
′′

2 +
1

x
y
′

2 +

(

λ2m −
µ2

x2

)

y2 = 0. (3)

Multiply (2) and (3), respectively, by y2(x) and y1(x), then subtract the results and multiply by x

to get
d

dx

[

x(y
′

1y2 − y
′

2y1)
]

= (λ2m − λ2n)xy1y2. (4)
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Bessel Functions

Integrate (4) with respect to x from x = 0 to x = 1 to get

(λ2m − λ2n)

∫ 1

0
xy1y2dx = |x(y

′

1y2 − y
′

2y1)
∣

∣

1

0
. (5)

The expression on right vanishes at both x = 0 and x = 1.

Therefore if m and n are distinct, i.e., λn and λm are distinct, then

∫ 1

0
xJµ(λnx)Jµ(λmx)dx = 0, (6)

which is the first part of (1).

Next we are required to evaluate the integral

∫ 1

0
xJµ(λnx)Jµ(λmx)dx for m = n.

Differential Equations 3 / 15



Bessel Functions

Multiplying (2) by 2x2y
′

1 and adjusting the terms, we get

d

dx

(

x2y
′

1

2
)

+
d

dx

(

λ2nx
2y2

1

)

− 2λ21xy
2
1 −

d

dx

(

µ2y2
1

)

= 0.

Integrate from x = 0 to x = 1 , we get

2λ2n

∫ 1

0
xy2

1dx =
∣

∣x2y
′

1

2
+ (λ2nx

2 − µ2)y2
1

∣

∣

1

0
. (7)

For x = 0, the expression in brackets vanishes and since y
′

1(1) = λnJ
′

µ(λn), (7) gives

∫ 1

0
x{Jµ(λnx)}

2dx =
1

2
{J

′

µ(λn)}
2 +

1

2

(

1−
µ2

λ2n

)

{Jµ(λn)}
2.

Using some earlier relations, it results in
∫ 1

0
x{Jµ(λnx)}

2dx =
1

2
{J

′

µ(λn)}
2 =

1

2
{Jµ+1(λn)}

2, (8)

which gives the second part of (1), and (6) and (8) together give the orthogonality result (1).
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Legendre Polynomials

Another important equation which gives rise to special functions is Legendre equation:

(1 − x2)y
′′

− 2xy
′

+ n(n + 1)y = 0. (9)

and its solutions are known as Legendre polynomials.

It is obvious that x = ±1 are regular singular points of Legendre equation.

We use regular power series method (Frobenius series is not required) to find a series solution

since the origin is an ordinary point in this case.

Because the region of convergence for such a series is |x | < 1, the infinite series will be

convergent for −1 < x < 1.
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Legendre Polynomials

Origin

When we try to solve Laplace’s equation in spherical coordinates (r , θ, ψ), we come across three

ordinary differential equations one of which (in θ) is

(1− x2)y
′′

− 2xy
′

+

[

n(n + 1)−
m2

1− x2

]

y = 0, (10)

y = f (x) is a function of θ with x = cos θ.

This equation is known as associated Legendre equation, where m and n are constants with

integral values, which arise while solving Laplace’s equation by separation of variables. Its

solutions are known as associated Legendre polynomials, denoted by Pm
n .

When m = 0, equation (10) reduces to Legendre equation (9).
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Legendre Polynomials

Assume a series solution of the form:

y =
∞
∑

k=0

akx
k (11)

Using (11) in (9), we get

∞
∑

k=0

akk(k − 1)xk−2 +
∞
∑

k=2

ak−2[n(n + 1) − 2(k − 2)− (k − 2)(k − 3)]xk−2 = 0. (12)

Recurrence relation:

ak = −
[n(n + 1) − 2(k − 2) − (k − 2)(k − 3)]ak−2

k(k − 1)
, k ≥ 2.

That is

ak = −
[(n − k + 2)(n + k − 1)]ak−2

k(k − 1)
, k ≥ 2. (13)
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Legendre Polynomials

The coefficients can be expressed in terms of either a0 or a1 as follows:

a2 = −
n(n + 1)

2!
a0, a3 = −

(n − 1)(n + 2)

3!
a1

a4 = −
(n − 2)(n + 3)

4 · 3
a2 = +

n(n − 2)(n + 1)(n + 3)

4!
a0

a5 = −
(n − 3)(n + 4)

5 · 4
a3 = +

(n − 1)(n − 3)(n + 2)(n + 4)

5!
a1

A complete solution can be written in the form

y = a0

[

1−
n(n + 1)

2!
x2 +

n(n − 2)(n + 1)(n + 3)

4!
x4 − · · ·

]

+ a1

[

x −
(n − 1)(n + 2)

3!
x3 +

(n − 1)(n − 3)(n + 2)(n + 4)

5!
x5 − · · ·

]

. (14)

If n is even, the first series terminates after certain terms and if n is odd, the second series

terminates after certain terms. In either case, the series which reduces to a finite sum is known as

a Legendre polynomial or a spherical harmonic of order n, denoted by Pn(x).
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Legendre Polynomials

To obtain the standard form of Legendre polynomial, we substitute the values of a0 and a1 in

such a way that the coefficients of the highest power of x in each series is equal to

(2n)!

2n(n!)2

These values for a0 and a1 are

a0 = (−1)n/2
n!

2n[(n/2)!]2
,

a1 = (−1)(n−1)/2 (n + 1)!

2n[( n−1
2

)!( n+1
2

)!]
.

The resulting general formula is

Pn(x) =
N
∑

k=0

(−1)k (2n − 2k)!

2nk!(n − k)!(n − 2k)!
xn−2k , (15)

where

N =
n

2
, n even; N =

n − 1

2
, n odd.
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Legendre Polynomials

This formula gives the first few Legendre polynomials as:

P0(x) = 1, P1(x) = x , P2(x) =
1

2
(3x2 − 1), P3(x) =

1

2
(5x3 − 3x),

P4(x) =
1

8
(35x4 − 30x2 + 3), P5(x) =

1

8
(63x5 − 70x3 + 15x),

P6(x) =
1

16
(231x6 − 315x4 + 105x2 − 5), P7(x) =

1

16
(429x7 − 693x5 + 315x3 − 35x),

P8(x) =
1

128
(6435x8 − 12012x6 + 6930x4 − 1260x2 + 35).

A complete solution of (9) can be written as

y(x) = APn(x) + BQn(x) (16)

where the Legendre polynomial of second kind Qn(x) can be obtained from Pn(x) as

Qn(x) = Pn(x)

∫

dx

(x2 − 1)[Pn(x)]2
(17)

which is not bounded near x = ±1.
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Legendre Polynomials

Legendre equation of order zero (n = 0) can be written as

(1− x2)y
′′

− 2xy
′

= 0, (18)

which has the compact form
d

dx

[

(1− x2)
dy

dx

]

= 0. (19)

Integrating (19):

(1− x2)
dy

dx
= A. (20)

Separating the variables and integrating (20):
∫

dy =

∫

A

1− x2
dx .

This gives the solution as

y = A
1

2
ln

(

1 + x

1− x

)

+ B. (21)
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Legendre Polynomials

We know that, being of second order, every Legendre equation has two linearly

independent solutions with two arbitrary constants which are A and B here.

Therefore, here we denote the linearly independent solutions of (18) as

P0(x) = 1, Q0(x) =
1

2
ln

(

1 + x

1− x

)

. (22)

It may be noted that Q0(x) diverges at x = 1.

As it has already been observed, for the general case of n 6= 0, power series solution is employed

to solve Legendre equation.

Note:

In most of the cases, since solutions bounded for x → ±1 are required, it is seen that the solution

of a specific Legendre equation of order n tends to contain only Pn(x).
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Legendre Polynomials

Figure 1 : Graphs of some Legendre polynomials
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Legendre Polynomials

Legendre polynomials in terms of θ:

By substituting x = cos θ =
eiθ + e−iθ

2
, Legendre polynomial can also be expressed as

Pk(cos θ) =
K
∑

n=0

(2n)!(2k − 2n)!(2 cos(k − 2n)θ)

22k (n!)2((k − n)!)2
. (23)

where

K =
k

2
, k even; K =

k − 1

2
, k odd.

The above expression is required for some problems in which it becomes essential that Legendre

polynomial be expressed in terms of θ. For such problems, usually in three-dimensional spherical

problems, the solutions remain in terms of θ.
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Legendre Polynomials

Rodrigues’ Formula:

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n, n = 0, 1, 2, 3, . . .

Proof:

The binomial expansion of (x2 − 1)n is given by

(x2 − 1)n =
n

∑

k=0

(−1)k
n!

(n − k)!k!
x2n−2k .

Differentiating it n times gives

dn

dxn
(x2 − 1)n =

N
∑

k=0

(−1)k
n!(2n − 2k)!

k!(n − k)!(n − 2k)!
xn−2k , (24)

where the last term is a constant and N = n/2 when n is even and N = (n − 1)/2 when n is odd.

Now on comparing (15) and (24), the desired result can be obtained.
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