
MA 542 Differential Equations

Lecture 11

(January 27, 2022)
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Bessel Functions

Important recurrence relations:

d

dx
(xµJµ(x)) = xµJµ−1(x), (1)

d

dx

(

x−µJµ(x)
)

= −x−µJµ+1(x). (2)

Recall Jµ(x) =

∞
∑

k=0

(−1)k
(x/2)2k+µ

k! Γ(µ + k + 1)
.

Proof of (1):
d

dx
(xµJµ(x)) =

d

dx

(

∞
∑

k=0

(−1)k
x2k+2µ

22k+µk! Γ(µ + k + 1)

)

=
∞
∑

k=0

(−1)k
2(k + µ)x2k+2µ−1

22k+µk! Γ(µ + k + 1)

=
∞
∑

k=0

(−1)k
x2k+2µ−1

22k+(µ−1)k! Γ(µ + k)

= xµ
∞
∑

k=0

(−1)k
x2k+(µ−1)

22k+(µ−1)k! Γ((µ − 1) + k + 1)
= xµJµ−1(x).
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Bessel Functions

In a similar manner, the result (2) can be obtained.

Opening up the differentials in equations (1) and (2) and dividing them by x±µ, respectively, the

following important results can be obtained:

Jµ−1(x) + Jµ+1(x) =
2µ

x
Jµ(x), (3)

Jµ−1(x) − Jµ+1(x) = 2J
′

µ(x). (4)

The above relations show the connection between some specific Bessel functions.

Specifically, for µ = n,

Result (3) can be interpreted as the recursion relation between three consecutive Bessel functions

of integer order whereas (4) shows that the derivative of an integer order Bessel function can be

expressed in terms of that Bessel function and the following integer order Bessel function.
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Bessel Functions

We know

J1/2(x) =

√

2

πx
sin x ,

J−1/2(x) =

√

2

πx
cos x .

Then, from (3), the following can be obtained:

For µ = ±(1/2)

J3/2(x) =
1

x
J1/2(x)− J−1/2(x) =

√

2

πx

(

sin x

x
− cos x

)

,

J−3/2(x) = −
1

x
J−1/2(x)− J1/2(x) =

√

2

πx

(

−
cos x

x
− sin x

)

.
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Bessel Functions

For µ = ±(3/2)

J5/2(x) =
3

x
J3/2(x)− J1/2(x) =

√

2

πx

(

3 sin x

x2
−

3 cos x

x
− sin x

)

,

J−5/2(x) = −
3

x
J−3/2(x)− J−1/2(x) =

√

2

πx

(

3 cos x

x2
+

3 sin x

x
− cos x

)

.

Such calculation can be continued indefinitely and hence every Bessel function Jm+1/2(x),

with m as an integer, is elementary.

Liouville proved that these are the only cases in which Jµ(x) is elementary. For all other

values of µ, they are not elementary.
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Bessel Functions

Recall from (1) and (2) that

d

dx
(xµJµ(x)) = xµJµ−1(x),

d

dx

(

x−µJµ(x)
)

= −x−µJµ+1(x).

Integrating both sides, we get

∫

xµJµ−1(x)dx = xµJµ(x) + c1,

∫

x−µJµ+1(x)dx = −x−µJµ(x) + c2.

This shows that

Integration of expressions containing Bessel functions yields results in terms of some other Bessel

functions.
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Bessel Functions

One simple example is (for µ = 0 and by using J
−1(x) = (−1)J1(x))

J0(x) = −

∫

J1(x)dx + c.

Another example is (for µ = 1)

xJ1(x) =

∫

xJ0(x)dx + c.

In a similar manner, we can obtain

∫ x

0
x2J0(x)dx = x2J1(x) + xJ0(x)−

∫ x

0
J0(x)dx ,

∫ x

0
x3J0(x)dx = x3J1(x) − 2x2J2(x).
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Bessel Functions

Observation from above two:

The integral

∫ x

0
xm+nJ0(x)dx can be reduced and evaluated completely when m + n is an odd

positive integer.However, the reduction is terminated by a term

∫ x

0
J0(x)dx if m + n is even.

In order to evaluate the integral

∫ x

0
J0(x)dx , we repeatedly integrate

Jµ−1(x)− Jµ+1(x) = 2J
′

µ(x) for µ = 1, 3, . . .:

∫ x

0
J0(x)dx −

∫ x

0
J2(x)dx = 2J1(x),

∫ x

0
J2(x)dx −

∫ x

0
J4(x)dx = 2J3(x),

and so on.

Adding both sides separately
∫ x

0
J0(x)dx = 2{J1(x) + J3(x) + · · · } = 2

∞
∑

n=0

J2n+1(x).
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Bessel Functions

Definition of generating function:

Let {an}n≥0 be a sequence of numbers. The generating function associated with this sequence is

the series G(x) =
∑

n≥0

anx
n.

In other words, the above series can be assumed to be generated by the function G(x).

Consider the following and observe the generating functions:

∞
∑

n=0

xn =
1

1− x
,

∞
∑

n=0

(−1)nxn =
1

1 + x
,

∞
∑

n=0

(ax)n =
1

1− ax
,

∞
∑

n=0

x2n =
1

1− x2
.
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Bessel Functions

The generating function of the Bessel functions is

G(x , t) = exp

{

1

2
x

(

t −
1

t

)}

. (5)

This function can be developed into a Laurent series. The coefficient of tn in the expansion is the

Bessel function of argument x and order n.

We can write

exp

{

1

2
x

(

t −
1

t

)}

=
∞
∑

n=−∞

tnJn(x). (6)

(6) can be obtained by considering the series expansions for exp(xt/2) and exp(−x/(2t)),

multiplying those series and then comparing the coefficients of tn.

Further recall that

J−n(x) = (−1)nJn(x). (7)
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Bessel Functions

Using (7), we can rewrite (6) as

exp

{

1

2
x

(

t −
1

t

)}

= J0(x) +
∞
∑

n=1

[

tn + (−1)nt−n
]

Jn(x). (8)

Let t = exp(iθ) so that 1/2(t − 1/t) =
exp(iθ)− exp(−iθ)

2
= i sin θ.

Then (8) gives

exp(ix sin θ) = J0(x) +
∞
∑

n=1

[exp(inθ) + (−1)n exp(−inθ)] Jn(x). (9)

We get

tn + (−1)nt−n = [exp(inθ) + (−1)n exp(−inθ)] = 2 cos(2kθ), n = 2k, (10)

tn + (−1)nt−n = [exp(inθ) + (−1)n exp(−inθ)] = 2i sin((2k − 1)θ), n = 2k − 1. (11)
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Bessel Functions

Therefore, (9) can be written as

exp(ix sin θ) = J0(x) + 2
∞
∑

k=1

J2k (x) cos(2kθ) + 2i
∞
∑

k=1

J2k−1(x) sin((2k − 1)θ). (12)

Equating real and imaginary parts

cos(x sin θ) = J0(x) + 2
∞
∑

k=1

J2k (x) cos(2kθ), (13)

sin(x sin θ) = 2
∞
∑

k=1

J2k−1(x) sin((2k − 1)θ). (14)

Now multiply both sides of (13) by cos nθ and both sides of (14) by sin nθ and integrating each

with respect to θ from 0 to π

∫ π

0
cos(x sin θ) cos nθdθ =

{

πJn(x), n even,

0, n odd,
(15)

∫ π

0
sin(x sin θ) sin nθdθ =

{

0, n even,

πJn(x), n odd.
(16)
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Bessel Functions

Adding (15) and (16), we can get for all positive integral values of n
∫ π

0
[cos(x sin θ) cos nθ + sin(x sin θ) sin nθ]dθ = πJn(x). (17)

Simplification gives
∫ π

0
cos(nθ − x sin θ)dθ = πJn(x). (18)

Further, putting θ = π/2 in (13) and (14), we get, respectively,

cos x = J0(x) + 2
∞
∑

k=1

(−1)kJ2k (x), (19)

sin x = 2
∞
∑

k=1

(−1)k−1J2k−1(x). (20)

The above show a relationship between circular functions and Bessel functions of first kind.
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Bessel Functions

Consider a boundary-value problem which consists of

1 a second-order homogeneous linear differential equation of the form

d

dx

[

p(x)
dy

dx

]

+ [q(x) + λr(x)]y = 0 (21)

where p, q and r are real functions such that p has a continuous derivative, q and r are

continuous and p(x) > 0 and r(x) > 0 for all x on a real interval a ≤ x ≤ b, and λ is a

parameter independent of x ;

2 two supplementary conditions

A1y(a) + A2y
′(a) = 0 (22a)

B1y(b) + B2y
′(b) = 0 (22b)

where A1,A2,B1 and B2 are real constants such that A1 and A2 are not both zero and B1

and B2 are not both zero.

This is called the Sturm-Liouville Problem.
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Bessel Functions

The function r(x) is called the weight function of the differential equation.

For Bessel’s equation,

r(x) = x .

Definition

Consider the Sturm-Liouville problem consisting of the differential equation (21) and the

supplementary conditions (22). The values of the parameter λ in (21) for which there exist

non-trivial solutions of the problem are called the characteristic values or eigenvalues of the

problem. The corresponding non-trivial solutions are called the characteristic functions or

eigenfunctions of the problem.
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Bessel Functions

For Sturm-Liouville problem

1 There exists an infinite number of characteristic values λn of the eigen problem. These

characteristic values λn can be arranged in a monotonic increasing sequence

λ1 < λ2 < λ3 < · · ·

such that λn → +∞ as n → ∞.

2 Corresponding to each characteristic value λn there exists a one-parameter family of

characteristic functions φn. Each of these characteristic functions is defined on a ≤ x ≤ b,

and any two characteristic functions corresponding to the same characteristic value are

nonzero constant multiples of each other.

3 Each characteristic function φn corresponding to the characteristic value λn (n = 1, 2, 3, . . .)

has exactly (n − 1) zeros in the open interval a < x < b.

Orthogonality of characteristic functions

Two functions f and g are called orthogonal with respect to the weight function r on the interval

a ≤ x ≤ b if and only if
∫ b

a

r(x)f (x)g(x) dx = 0.
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Bessel Functions

Definition

Let {φn}, n = 1, 2, 3, . . . be an infinite set of functions defined on the interval a ≤ x ≤ b. The set

{φn} is called an orthogonal system with respect to the weight function r on a ≤ x ≤ b if every

two distinct functions of the set are orthogonal with respect to r on a ≤ x ≤ b. That is, the set

{φn} is orthogonal with respect to r on a ≤ x ≤ b if

∫ b

a

r(x)φm(x)φn(x) dx = 0, for m 6= n.

Theorem

Let λm and λn be any two distinct characteristic values of a Sturm-Liouville problem. Let φm and

φn, respectively, be the characteristic functions corresponding to λm and λn. Then the

characteristic functions φm and φn are orthogonal with respect to the weight function r on the

interval a ≤ x ≤ b.
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Bessel Functions

Definition

Let {φn}, n = 1, 2, 3, . . . be an infinite set of functions defined on the interval a ≤ x ≤ b. The set

{φn} is called an orthogonal system with respect to the weight function r on a ≤ x ≤ b if every

two distinct functions of the set are orthogonal with respect to r on a ≤ x ≤ b. That is, the set

{φn} is orthogonal with respect to r on a ≤ x ≤ b if

∫ b

a

r(x)φm(x)φn(x) dx = 0, for m 6= n

Theorem

Let λm and λn be any two distinct characteristic values of a Sturm-Liouville problem. Let φm and

φn, respectively, be the characteristic functions corresponding to λm and λn. Then the

characteristic functions φm and φn are orthogonal with respect to the weight function r on the

interval a ≤ x ≤ b.
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