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Bessel’s Equation and Bessel’s Functions

The differential equation

x2y
′′

+ xy
′

+ (x2 − µ2)y = 0, (1)

where µ is a constant, is called Bessel’s equation of order µ and its solutions are known as Bessel

functions of order µ. (Unless stated, µ is not an integer)

Laplace’s equation in cylindrical coordinates (r , θ, z) is given by

urr + (1/r)ur + (1/r2)uθθ + uzz = 0. (2)

In order to solve this equation, we can use the separation of variables method by assuming a

solution of (2) of the form

u(r , θ, z) = R(r)T (θ)Z(z). (3)

Using (3) in (2), we see that the partial differential equation (2) is converted to three ordinary

differential equations – one each in r , θ and z as follows:

r2R′′

+ rR′

+ (λ2r2 − µ2) = 0, T ′′

+ µ2T = 0, Z′′ − λ2Z = 0,

where the constants λ and µ are separation constants.
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Bessel’s Equation and Bessel’s Functions

The last two equations of the above system give rise to two simple solutions whereas the first one

is not known to have some standard function(s) as solutions. This equation is nothing but what

we call Bessel’s equation of order µ with parameter λ.

We can easily see that x = 0 is a singular point of equation (1). Moreover, here

P(x) = 1/x , Q(x) = (x2 − µ2)/x2. Hence xP(x) = 1 and x2Q(x) = x2 − µ2 which show that

x = 0 is a regular singular point. Let’s assume the solution of (1) to be of the form (Frobenius

series)

y = xm
∞
∑

k=0

akx
k .

Indicial equation gives m = ±µ. First consider m = +µ. (µ = ±1/2 is special case to be

discussed later.)

Recurrence relation (Equating the coefficient of xm+k)

ak = − ak−2

k(k + 2µ)
, k ≥ 2. (4)
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Bessel Functions

We know that a0 6= 0 and a1 = 0 above since a−1 = 0.

It results in

a1 = a3 = a5 = · · · = a2k−1 = · · · = 0.

All other coefficients can be expressed as

a2 = − a0

2(2µ + 2)
= − a0

22(µ+ 1)
,

a4 = − a2

4(2µ + 4)
= +

a0

222!(µ + 1)(µ + 2)
,

a6 = − a4

6(2µ + 6)
= − a0

233!(µ + 1)(µ + 2)(µ + 3)
.

This gives rise to the general coefficient as

a2k = (−1)k
a0

22kk! (µ + 1)(µ + 2) · · · (µ+ k)
.

Differential Equations 4 / 15



Bessel Functions

Hence a solution can be written as

y = a0x
µ

∞
∑

k=0

(−1)k
x2k

22kk! (µ + 1)(µ + 2) · · · (µ+ k)
. (5)

Bessel function of first kind of order µ, denoted by Jµ(x), is defined by putting

a0 = 1/(2µΓ(µ+ 1)) in (5) so that

y ≡ Jµ(x) =
∞
∑

k=0

(−1)k
(x/2)2k+µ

k! Γ(µ + k + 1)
(6)

This is one of the solutions of equation (1) and the other linearly independent solution can be

obtained by considering m = −µ.

That is,

J−µ(x) =
∞
∑

k=0

(−1)k
(x/2)2k−µ

k! Γ(−µ+ k + 1)
. (7)
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Bessel Functions

Hence the general solution can be written as (µ is a fraction)

y = AJµ(x) + BJ−µ(x), (8)

where A and B are arbitrary constants.

When µ = n, i.e., an integer

Jn(x) =
∞
∑

k=0

(−1)k
(x/2)2k+n

k! (n + k)!
, (9)

J−n(x) =
∞
∑

k=0

(−1)k
(x/2)2k−n

k! (k − n)!
. (10)

However, Jµ(x) and J
−µ(x) are not linearly independent when µ takes integer

values, i.e, µ = n.
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Bessel Functions

In fact Jn(x) and J
−n(x) are related by

J−n(x) = (−1)nJn(x), (11)

and hence they are not linearly independent.

Proof:

J−n(x) =
∞
∑

k=0

(−1)k
(x/2)2k−n

k! (k − n)!

=

n−1
∑

k=0

(−1)k
(x/2)2k−n

k! (k − n)!
+

∞
∑

k=n

(−1)k
(x/2)2k−n

k! (k − n)!

=
∞
∑

k=n

(−1)k
(x/2)2k−n

k! (k − n)!
(replacing k by n +M)

=
∞
∑

M=0

(−1)M+n (x/2)
−n+2n+2M

(n +M)! M!

= (−1)n
∞
∑

M=0

(−1)M
(x/2)n+2M

(n +M)! M!
= (−1)nJn(x).
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Bessel Functions

For µ = n, the second linearly independent solution is found as

Yn(x) = lim
µ→n

Yµ(x) =
cosπµJµ(x) − J−µ(x)

sinπµ
, (12)

which is known as Bessel function of second kind. Yµ(x) has an important property:

Yµ(x) → −∞ when x → 0.

In that case, for µ = n, the general solution of (1) can be written as

y = AJn(x) + BYn(x). (13)

The most useful Bessel functions are the ones of order 0 and 1:

J0(x) =
∞
∑

k=0

(−1)k
1

(k!)2

( x

2

)2k
= 1− x2

22
+

x4

22.42
− x6

22.42.62
+ · · · , (14)

J1(x) =
∞
∑

k=0

(−1)k
1

k!(k + 1)!

( x

2

)2k+1
=

x

2
− 1

1!2!

( x

2

)3
+

1

2!3!

( x

2

)5
+ · · · (15)
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Bessel Functions

An interesting result follows from (14) and (15):

J
′

0(x) = −J1(x) (16)

Figure 1 : Graphs of J0(x), J1(x) and J2(x)
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Bessel Functions

Observations

Each curve has a damped oscillatory behaviour producing an infinite number of positive

zeros.

These zeros occur alternately − similarly as for cos x and sin x .

There exist two relations: J
′

0(x) = −J1(x) and (cos x)
′

= − sin x .

Another observation

J0(x) begins with a constant term (which is 1) whereas J1(x) begins with a term containing x .

Similarly J2(x), J3(x), . . . etc. begin with a term containing x2, x3, . . ., respectively.

Therefore, for integer order Bessel functions,

Jn(0) =

{

1, n = 0,

0, n ≥ 1.
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Bessel Functions

In some applied problems, another form of general solution is used:

y(x) = AH
(1)
µ (x) + BH

(2)
µ (x). (17)

H
(1)
µ (x) and H

(2)
µ (x) are, respectively, known as Hankel functions of first and second kind of order

µ, or Bessel function of third kind of order µ.

They are defined by the relations

H
(1)
µ (x) = Jµ(x) + iYµ(x), (18)

H
(2)
µ (x) = Jµ(x)− iYµ(x). (19)

Principal asymptotic forms of Hankel functions:

For fixed µ and r → ∞

H
(1)
µ (r) ∼

√

2/πr exp{i(r − 1

2
µπ − 1

4
π)}, −π < Arg r < 2π, (20)

H
(2)
µ (r) ∼

√

2/πr exp{−i(r − 1

2
µπ − 1

4
π)}, −2π < Arg r < π. (21)
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Bessel Functions

Consider Bessel’s equation

x2y
′′

+ xy
′

+ (x2 − µ2)y = 0. (22)

Use the substitution u(x) =
√

xy(x) so that

y(x) = x−1/2u.

Subsequently, (22) gets transformed to

d2u

dx2
+

(

1 +
1− 4µ2

4x2

)

u = 0. (23)

When x is very large, equation (23) closely approximates the equation

d2u

dx2
+ u = 0. (24)

which has u1(x) = cos x and u2(x) = sin x as the two linearly independent solutions.
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Bessel Functions

It is fair to expect that for large values of x , any Bessel function y(x) will behave like some linear

combination of
cos x√

x
and

sin x√
x
.

It is actually supported by

Jµ(x) =

√
2

πx
cos

(

x − π

4
− µπ

2

)

+
r1(x)

x3/2
,

Yµ(x) =

√
2

πx
sin

(

x − π

4
− µπ

2

)

+
r2(x)

x3/2
,

where r1(x) and r2(x) are bounded as x → ∞.

It can also be clearly observed that equation (24) can be obtained from equation (23) by putting

µ = ±(1/2).
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Bessel Functions

In other words,

for this case, equation (23) shows that general solution y(x) of converted Bessel’s equation can

be expressed in terms of two forms (depending on whether we consider large x or µ = ±1/2):

y =
1√
x
(c1 cos x + c2 sin x) , (25)

y = c1J1/2(x) + c2J−1/2(x). (26)

Therefore it must be true that

√
xJ1/2(x) = a cos x + b sin x ,

√
xJ

−1/2(x) = c cos x + d sin x ,

for certain constants a, b, c and d.
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Bessel Functions

By using the series solution expressions for these Bessel functions and trigonometric functions, it

can be obtained that a = 0, b =
√

(2/π), c =
√

(2/π) and d = 0.

Therefore,

J1/2(x) and J
−1/2(x) are connected to sin x and cos x by

J1/2(x) =

√

2

πx
sin x , (27)

J
−1/2(x) =

√

2

πx
cos x . (28)
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