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Some Beautiful Quotes

“The deep study of nature is the most fruitful source of mathematical discoveries. By offering to

research a definite end, this study has the advantage of excluding vague questions and useless

calculations; besides it is a sure means of forming analysis itself and of discovering the elements

which it most concerns us to know, and which natural science ought always to conserve.”

-Jean Baptiste Joseph Fourier

“My powers are ordinary. Only my application brings me success.” - Sir Isaac Newton

“The enchanting charms of this sublime science reveal only to those who have the courage to go

deeply into it.” -Carl Friedrich Gauss

“Nature always tends to act in the simplest way.” -Daniel Bernoulli

“What we know is not much. What we don’t know is enormous.” -Pierre Simon De Laplace

“For since the fabric of the universe is most perfect and the work of a most wise Creator, nothing

at all takes place in the universe in which some rule of maximum or minimum does not appear.”

-Leonhard Euler
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Tea/Coffee

Figure 1 : Hot Tea
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Tea/Coffee

Figure 2 : Cold Tea
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Falling Body

Figure 3 : Falling Body
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Pendulum

Figure 4 : Motion of a pendulum
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Sloshing

Figure 5 : Sloshing
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Flow through porous media

Figure 6 : Aquifer
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Abundance of Mathematics in Nature

Many of the general laws of nature – in physics, chemistry, biology, astronomy and

what not–

find their most natural expression in differential equations.

Applications are mainly in the areas of mathematics itself, other branches of science, engineering,

economics and many other fields of applied sciences. Why is it so?

Consider

• Planets, meteors

• Rainbows, clouds, hurricanes

• Oceans, lakes, rivers

Astronomy is probably the first discipline which extensively used mathematics (differential

equations) and showed how important they are to know our universe. Later on, differential

equations played a paramount role in the projection of a satellite into its orbit.

To understand atmosphere and the universe, we need to know physics as well mathematics very

comprehensively.
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River

Figure 7 : River in flow

MA542 11 / 44



Lakes

Figure 8 : Lakes
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Waterfalls

Figure 9 : Niagara Falls
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Differential Equations

“Newton has shown us that a law is only a necessary relation between the present state of the

world and its immediately subsequent state. All the other laws since discovered are nothing else;

they are in sum, differential equations.” -Henri Poincaré

“The integrals which we have obtained are not only general expressions which satisfy the

differential equation, they represent in the most distinct manner the natural effect which is the

object of the phenomenon when this condition is fulfilled, the integral is, properly speaking, the

equation of the phenomenon; it expresses clearly the character and progress of it, in the same

manner as the finite equation of a line or curved surface makes known all the properties of those

forms.” -Jean Baptiste Joseph Fourier
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Differential Equations

We know that if y = f (x) or y = f (t) is a given function,

then its derivative
dy

dx
or

dy

dt
can be interpreted as the rate of change of y with respect to x or t.

In most of the natural processes,

the variables involved and their rates of changes are connected to one another by means of the

basic scientific principles that govern the process.

When this connection is expressed in mathematical symbols, the result is quite often a differential

equation or a system of differential equations. Let us consider some examples we are already

familiar with.
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Example 1

According to Newton’s second law of motion,

the acceleration a of a body of mass m is proportional to the total force F acting on it, with 1/m as the constant

of proportionality, so that

a = F/m or

ma = F . (1)

Suppose, for instance, that

a body of mass m falls freely under the action of gravity alone, then the only force acting on it is mg .

If y is the distance down to the body from some fixed height,

then its velocity v =
dy

dt
is the rate of change of position and its acceleration a =

dv

dt
=

d2y

dt2
is the rate of

change of velocity.

With this notation, equation (1) becomes

m
d2y

dt2
= mg ,

or,
d
2y

dt2
= g . (2)
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Example 1 (cont..)

If we change the situation by assuming that there is an air resistance proportional

to the velocity,

then the total force acting on the body is mg − k(dy/dt).

Subsequently, equation (1) takes the form

m
d2y

dt2
= mg − k

dy

dt
. (3)

Equations (2) and (3) are the differential equations that express the essential attributes of two

physical processes of a similar problem under consideration.

They are, respectively, called undamped motion and damped motion of the body.
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Example 2

Newton’s Law of Cooling states that the rate of change of the temperature of an

object is proportional

to the difference between its own temperature and the ambient temperature (i.e., the

temperature of its surroundings).

Newton’s this law makes a statement about an instantaneous rate of change of the temperature.

When we translate this verbal statement into mathematical symbols,

we arrive at a simple first-order ordinary differential equation.

The solution to this equation will then be a function that tracks the complete record of the

temperature of the object over all time.
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Example 2 (cont..)

If T is the temperature of an object at time t and S is the temperature of its

surroundings, then this law formulates into

dT

dt
= −k(T − S), (4)

where k is a constant of proportionality.

If T0 is the initial temperature,

the temperature of the object at any time t is given by

T (t) = S + (T0 − S)e−kt . (5)

Equation (4) represents cooling.

If the problem has to be a heating problem, then the minus sign in (4) gets replaced by a plus

sign.

To have a specific value of k, we need to derive another condition.
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Example 3

Consider a pendulum of length l whose bob has mass m.

Then the equation of motion (undamped case) is given by

d2θ

dt2
+

g

l
sin θ = 0.

Is this the equation we usually know?

Or the equation we know is different from this?

The applicable form is the following linearized version:

d2θ

dt2
+

g

l
θ = 0.
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Satellite

Figure 10 : An orbiting satellite
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Satellite

A system of differential equations

Consider the rectangular coordinate system Oxyz with the origin at the center of mass of a planet.

The xy -plane coincides with the equatorial plane.

The z-axis is directed along the planet’s rotation axis.

The system of equations of motion of a satellite of the planet:

d2x

dt2
−

∂W

∂x
=

∂R

∂x
,

d
2y

dt2
−

∂W

∂y
=

∂R

∂y
,

d2z

dt2
−

∂W

∂z
=

∂R

∂z
,

where

R is the distance between the planet and the satellite and

W =
gm

2

{

1 + iσ

r1
+

1− iσ

r2

}

,
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Astronomy/Cosmology

in which

r1 =
√

x2 + y2 + [z − c(σ + i)]2,

r2 =
√

x2 + y2 + [z − c(σ − i)]2,

g is the gravitational constant, m is the mass of the planet, c and σ are certain constants,

i =
√
−1.
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Mathematical Biology

Extensive use of differential equations is found nowadays in topics such as

• Drug delivery

• Growth/retardation of cells

• Epidemic/pandemic models (including COVID-19)

Governing equation:

Every modeling has its own appropriate governing differential equation or a system of differential

equations.

Initial data:

Every modeling has its own appropriate initial data which are used as initial condition(s).
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River Mechanics:

Differential equations play a pivotal role in modeling and solving various problems

in river mechanics such as

• Flood routing

• Flow discharge

• Dambreak flow

• River-bed and River-bank erosion

• Sediment transport

Works

They may be analytical, computational or experimental.

Initial data:

Every modeling has its own appropriate initial data which are used as initial condition(s).

Benefits:

To take appropriate steps to stop/reduce/control erosion, sediment accumulation etc.
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Open Channel Flows

(a) River (b) Canal

Figure 11 : River flows
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Applications: First-order equations

We have already discussed Newton’s law of cooling and Kolmogorov Predator-Prey

model.

The differential equation

dy

dt
= ky

states that the rate of change of a quantity is proportional to the quantity itself. if k > 0 and

y > 0, then it ia problem of growth whereas for k < 0 and y > 0, it is a problem of decay.

y can be considered to the population of bacteria and the solution gives the total number of

bacteria given the initial number.

The solution y = cekt clearly shows that the growth is exponential.

The same equation (with a negative sign) can be applied for a problem of decay of radioactive

substances with the information that half-life of radium is 1600 years.
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Applications: First-order equations

Consider application to chemical species reaction

A first-order chemical reaction is defined when the rate of change of concentration of the

chemical species is proportional to the concentration. If a is the concentration of species A at

time t = 0 and x is the concentration at time t, then a first-order reaction is defined by a

differential equation
dx

dt
= k(a − x).

A second-order chemical reaction or bimolecular reaction can be defined when molecules of

species A and B react to form molecules of species C . If original concentration of A and B are,

respectively, a and b and x and x is the concentration at time t, then the second-order reaction

can be expressed as
dx

dt
= k(a − x)(b − x).
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Applications: First-order equations

Let us now come to electric circuits.

Let us consider an electric circuit such that

• Q is the instantaneous charge

• I is the instantaneous current

• E is the instantaneous emf

• R is the constant resistance

• C is the constant capacitance

Current is proportional to emf, i.e.,

I ∝ E ,

giving

E = RI .

Instantaneous current is given by

I (t) =
dQ

dt
.

giving

E = RI .
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Applications: First-order equations

Let us now take up differential equation related to electric circuits.

The algebraic sum of all the instantaneous voltage drops around any closed loop is zero, or the

voltage supplied is equal to the sum of the voltage drops. This was developed Gustav Robert

Kirchoff, a German physicist.

The following hold:

• voltage drop across resistance = RI

• voltage drop across inductance = L dI
dt

• voltage applied = E(t)

Kirchoff’s law gives the differential equation for R-L circuit

L
dI

dt
+ RI = E(t).

with some initial condition, say I (0) = 0, i.e., current is zero at time t = 0.

EMF can be of two types:

• E(t) = E0, having a constant voltage

• E(t) = E0 cosωt, having a periodic voltage instead of a constant voltage.
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Second-order equations

Second-order equations have immense significance from practical point of view.

• Many physical phenomena can be represented in terms of differential equations

• In many aspects of mathematical physics

Most general form:

y ′′(x) = f (x , y , y ′)

Specific form:

y ′′ + P(x)y ′ + Q(x)y = R(x).

If R(x) ≡ 0, equation is called homogeneous, otherwise non-homogeneous.

Solutions depend on the functions:

• P(x) and Q(x) are constants.

• P(x) and Q(x) have specific form in x .

• P(x) and Q(x) have arbitrary form in x .
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Applications: Second-order equations

We have already discussed Newton’s second law of motion and also the motion of

a pendulum bob.

Spring mass system without external force

The equation of motion of a particle of mass m, attracted to a fixed point in its line of motion by

a force of c times its distance from the point, and damped by a frictional resistance of k times its

velocity gives the differential equation

m
d2y

dt2
+ k

dy

dt
+ cy = 0.

Spring mass system with external force

With specific values of the constants and consideration of the action of an external periodic force,

the equation of motion gets modified to

d
2y

dt2
+ 2k

dy

dt
+ p2y = a cos qt.
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Applications: Second-order and higher-order equations

Kirchoff’s law

The earlier equation for I (t) can be expressed as a second-order equation for Q(t):

L
d2Q

dt2
+ R

dQ

dt
+

Q

C
= E .

Beam equation

A beam of length 2L is subjected to a vertical load W (x) such that x denotes the distance from

one end of the beam. Then the deflection y(x) satisfies

EI
d
4y

dx4
= W (x), 0 < x < 2L

where

• E: the modulus of elasticity

• I: moment of inertia.

Both are assumed constant.

We have discussed only a very few examples which may be considered as some drops of water in

an ocean of physical problems for which ordinary differential equations play a huge role.
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Water Waves

The wave propagation and its application is encountered in many areas of physical

interest

Studies on waves have received focus in science and engineering, and water waves serve as

important models for investigation.

Applications:

The study of different kinds of water waves is of importance for various applications. For

example,

1 for predicting the behaviour of floating structures (immersed totally or partially) such as

tension-leg platform, buoys, ships, submarines,

2 for describing flows over bottom topography.

3 for installing appropriate structures as breakwater to reduce wave impact.

4 for analyzing scattering and trapping of waves

5 for finding ocean space for structures usually installed on land.
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Water Waves

Figure 12 : Water Waves

MA542 35 / 44



Water Waves

(a) Oil rig, The South China Sea (b) Sea-cage, Taiwan

Figure 13 : Structures in ocean
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Water Waves

Figure 14 : Floating structures in ocean
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Water Waves

Figure 15 : Ship in motion in ocean
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Water Waves

Figure 16 : Oil spill
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Water Waves

Figure 17 : Schematic diagram of water wave
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Water Waves

Essential notations:

• k(= 2π/L) - wavenumber

• L - wavelength

• T - time period

• σ or ω - angular wave frequency

• crest - the highest point of wave

• trough - the lowest point of wave

• η - instantaneous wave elevation (above mean free surface)

• A - wave amplitude

• Φ - time-dependent velocity potential

• φ - time-independent velocity potential
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Water Wave Theory: essential equations and conditions

Two theories available:

• Linear water wave theory (Small amplitude - amplitude much smaller than wavelength)

• Nonlinear water wave theory (finite amplitude)

Governing equation

∇2φ = 0 (Laplace’s equation),

or,

(∇2 − ν2)φ = 0 (Modified Helmholtz equation).

is the equation of continuity for incompressible fluid.

Boundary conditions:

• At the sea/ocean bottom

• At the upper surface (may be free surface or any other surface)

• At any vertical boundary (problem specific)

• At the body surface, if any.
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Water Wave Theory: essential equations and conditions

On the free surface z = η, the kinematic boundary condition (in general)

∂Φ

∂z
=

∂η

∂t
+

∂η

∂x

∂Φ

∂x
+

∂η

∂y

∂Φ

∂y
, at z = η(x , y , t). (6)

Linearized dynamic boundary condition

∂Φ

∂t
+

p

ρ
+ gη = 0, at z = 0, (7)

Linearized kinematic condition

∂Φ

∂z
=

∂η

∂t
at z = 0. (8)
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Water Wave Theory: essential equations and conditions

Combined free surface condition at z = 0 (Combining (7) and (8))

∂φ

∂z
−

ω2

g
φ = 0. (9)

Impermeable sea-bed condition

∂Φ

∂n
= 0 at z = h(x , y). (10)
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