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Abstract

Cyber-Physical Systems (CPSs) like those in the automotive and avionic domains,
smart grids, nuclear plants, etc., often consist of multiple control sub-systems run-
ning on distributed processing platforms. Most of these control systems are modeled
as real-time independent tasks or Precedence-constrained Task Graph (PTG) de-
pending on the nature of interactions between their functional components. These
tasks typically read their input parameters via sensors. The sensed inputs are then
transmitted as messages over communication channels to processing elements where
corresponding control outputs are computed. The outputs in turn, are communi-
cated to actuators as messages through communication channels. This disserta-
tion presents a few novel real-time task-message co-scheduling strategies for safety-
critical CPSs consisting of various types of task and execution platform scenarios.

The entire thesis work is composed of multiple contributions categorized into four
phases, each of which is targeted towards a distinct task/platform scenario. The
first phase delves with the design of co-scheduling strategies for independent pe-
riodic real-time tasks with associated input and output messages, on a bus-based
homogeneous multiprocessor system. Although most scheduling approaches have
traditionally been oriented towards homogeneous multiprocessors, continuous de-
mands for higher performance and reliability along with better thermal and power
efficiencies, have created an increasing trend towards distributed heterogeneous pro-
cessor platforms. In the second phase, we have considered the problem of scheduling
real-time systems modeled as PTGs on fully-connected heterogeneous systems. The
tasks considered in both the first and second phases, may have multiple implementa-
tions designated as service-levels/quality-levels, with higher service-levels producing
more accurate results and contributing to higher rewards/Quality of Service (QoS )
for the system. In the third phase, we extend the problem of scheduling PTGs
on fully-connected platforms, to CPS systems where the processors are connected
through a limited number of bus based shared communication channels. While the
third phase considers the problem of scheduling a single PTG, the final phase solves
the problem of scheduling multiple independent periodic real-time PTGs. The works
proposed in the third and fourth phases, endeavour towards the maximization of
slack within the generated schedule, which can then be used to minimize energy
dissipation in the system. The thesis proposes both optimal and heuristic solution
approaches for all its phases. Practical applicability and efficacy of the presented
schemes have been extensively evaluated through simulation-based experiments as
well as real-world benchmarks.



1 Introduction

Today, Cyber-Physical Systems (CPSs) are becoming an important part of our daily lives. A
CPS is composed of physical sub-systems together with computing and networking (cyber sub-
systems) where embedded computers and networks monitor and control the physical processes.
For example in a traditional aircraft, a pilot controls the aircraft using movable surfaces on the
wings and tail, connected to the cockpit through mechanical and hydraulic sub-systems. On
the other hand in a fly-by-wire aircraft, the control commands are electronically sent by a flight
computer over a network to actuators at the wings and tail, making the aircraft much lighter
than a traditional aircraft, resulting in better fuel efficiency.

Many CPSs are based on federated architectures where functional sub-components are as-
sociated with their own dedicated processing elements, many of which remain severely un-
derutilized. Such underutilization may lead to the deployment of more resources than are
actually necessary when the functionalities/applications are allowed to execute in an integrated
fashion on a small consolidated number of processing elements. Thus, federated architectures
may result in higher design costs compared to more integrated execution of applications on
smaller consolidated platforms. However, consolidated architectures lead to significantly in-
creased design complexity due to a higher degree of contention for shared resources (such as
processing elements, buses, memories etc). Given a distributed platform consisting of a set
of processing elements connected through communication channels, the successful execution of
tasks and transmission of messages (while satisfying deadlines and other resource constraints),
is essentially a real-time task-message co-scheduling problem. This dissertation focuses to-
wards co-scheduling strategies for real-time CPSs where functionalities may be represented as
independent tasks, Precedence-constrained Task Graphs (PTGs) or even multiple independent
applications each represented as a separate PTG. The targeted platforms may consist of homoge-
neous/heterogeneous processing elements which may either be fully interconnected or connected
through shared possibly heterogeneous buses.

Solution approaches to real-time scheduling problems can be broadly classified as heuristic
and optimal. Heuristic schedule construction methodologies are typically based on the satisfac-
tion of a set of sufficiency conditions and cannot take into consideration all necessary schedula-
bility requirements. Consequently, such scheduling schemes become sub-optimal in nature with
their results often deviating significantly from their optimal counterparts. On the other hand,
optimal solution approaches take all necessary and sufficient conditions into consideration and
have the potential to make a fundamental difference in time-critical systems with respect to
performance, reliability, and other non-functional metrics like cost, power, space, etc. Optimal
schedules can also act as benchmarks allowing accurate comparison and evaluation of heuristic
solutions [1]. Several strategies including automata based synthesis, Constraint Satisfaction
Problem (CSP)/Satisfiability Modulo Theories (SMT) based modeling, search based technique,
etc. have been typically used to construct optimal scheduler for CPSs. This thesis has focused
towards the synthesis of optimal scheduler using a state-space search approach or CSP based
modeling followed by solution generation using CPLEX [2] a standard industry grade constraint
solver.
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Though, optimal scheduling solutions may potentially deliver significantly better perfor-
mance compared to sub-optimal heuristic solutions, finding optimal solutions may become
prohibitively expensive for large problem sizes. Further, during design space exploration, mul-
tiple quick design iterations are needed and/or powerful server systems may not be available at
the designer’s disposal. In such cases the designer must resort to sub-optimal yet satisfactorily
good polynomial time heuristic solution for the problem at hand. Many heuristic schedulers
which are commonly based on variations of the well known list scheduling strategy [3–7] are
found in literature, particularly for CPS applications represented as task graphs.

This dissertation presents a few novel real-time optimal/heuristic offline task-message co-
scheduling strategies for safety-critical CPSs consisting of various types of task and execution
platform scenarios. In real-time safety-critical CPSs where deadline misses may lead to catas-
trophic consequences, offline scheduling is often preferred as all timing requirements can be
guaranteed before putting the system in operation, specially in cases where the task systems
are persistent and do not vary dynamically at run time. Additionally, offline scheduling allows
time and space complexities involved in solution space exploration to become independent of
run-time scheduling overheads.

2 Related Work

Traditionally, scheduling of real-time independent tasks on multiprocessor systems has been
based on either partitioned or global approaches [8–10]. With partitioning, the multiproces-
sor scheduling problem is transformed into uniprocessor scheduling problem, where a task is
assigned to a designated processor and gets executed entirely on that processor. Well known
optimal uniprocessor scheduling algorithms include Rate-monotonic (RM ) (static priority) and
Earliest Deadline First (EDF ) (dynamic priority), proposed by Liu and Layland [11]. How-
ever, a major drawback of partitioning is that, upto half of the system capacity may remain
unutilized in order to ensure timing constraints of a given task set [12]. Unlike the fully par-
titioned approaches, more global schedulers like Pfair [13], PD2 [14], ERFair [15], Boundary
Fair (BF ) [16], SA [17], LLREF [18], RUN [19], DP-Fair [20] can achieve very high utilization
of the system capacity by allowing migrations of tasks among processors. The Proportional
fair (Pfair) scheduler proposed by Baruah et al. [13] is known to be the first optimal global
real-time scheduler on multiprocessor systems for tasks with implicit deadlines. Based on Pfair,
Anderson et al. [15] proposed a work-conserving multiprocessor scheduling algorithm called the
Early-Release fair (ERfair) scheduler. However both the above schemes attempt to maintain
proportional fairness at each time slot and incur unrestricted preemption/migration overheads
due to this. Recently, Levin et al. [20] proposed a semi-partitioned approximate proportional
fair optimal scheduler called DP-Fair with much lower and bounded context switching over-
heads.

The problem of scheduling PTGs on multiprocessor systems has also received the atten-
tion of researchers over many decades. Various optimal solution approaches, such as linear
programming, Best-first search, and other exhaustive enumeration techniques including model-
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based formal synthesis mechanisms, have been proposed [21, 22]. Prasanna et al. [23] devised
a control-theoretic optimal scheduling mechanism for task graphs executing on a homogeneous
multiprocessor system. Later, they have extended their scheme to include communication over-
heads between task nodes [24]. Sarad et al. [1] developed a mixed-integer linear programming
(MILP) based PTG scheduling strategy for platforms consisting of a set of fully connected
homogeneous processing nodes. Liu et al. [25] considered the problem of task node assignment
for PTGs, among heterogeneous clusters connected through communication links of various
transmission capacities. Kanemitsu et al. [26] presented an Integer Linear Programming (ILP)
based optimal task scheduling scheme for fully-connected heterogeneous distributed systems.
Hsiu et al. [27] developed an optimal and approximation algorithm for the scheduling of PTGs
on heterogeneous distributed platforms with shared buses. However, a drawback of this scheme
is the simplistic assumption that mapping of task nodes to processing elements are known a
priori.

Although optimal scheduling solutions may potentially deliver significantly better perfor-
mance, it may be noted that computation of such optimal solutions may often become pro-
hibitively expensive for large problem sizes. Therefore, research in this domain has also focused
towards the design of low-overhead heuristics that provide quick and satisfactory schedules.
Heuristic scheduling of PTGs on multiprocessor platforms have often been dealt with list
scheduling based techniques. These scheduling strategies typically maintain an ordered pri-
ority list of all tasks in the PTG [3–7] and involves two phases, (i) task prioritization: for
selecting the highest-priority ready task and (ii) processor selection: for selecting a suitable
processor that minimizes execution time. Some examples of this class of techniques include the
Modified Critical Path (MCP) [28], Highest Level First (HLF ) [29], Critical Path On a Pro-
cessor (CPOP) [3], Heterogeneous Earliest Finish Time (HEFT ) [3], Predict Earliest Finish
Time (PEFT ) [4] and Heterogeneous Selection Value (HSV ) [5] algorithms. They attempt to
construct a static-schedule for the given PTG to minimize the overall schedule length while
satisfying resource and precedence constraints.

3 Challenges

Developing efficient scheduling strategies for diverse real-time applications in today’s safety-
critical CPSs must meet several challenges. We now enumerate a few such important challenges
and discuss them [21].

1. Timing requirements:
Real-time systems are characterized by their operations not only being logically correct,
but also on the time at which they are performed. The time before which a task should
complete its execution for the safety of the system, is called its deadline. Scheduling
schemes for safety-critical real-time systems must be able to guarantee the timing require-
ments (i.e., deadlines) associated with various types of tasks that co-exist in the system.

2. Resource constraints:
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Safety-critical systems are implemented on platforms consisting of a limited number of
resources. Providing a lot of redundant hardware is not always possible/feasible as the sys-
tem’s cost increases, and the system’s performance may degrade in terms of power/energy
dissipation, etc. For example, in cost-sensitive safety-critical systems like cars, a cost
differential of even a hundred dollars can make a commercial difference [30–33]. In ad-
dition, over the years, the nature of the processing elements used in real-time systems
is transformed from uniprocessor to homogeneous multiprocessor platforms to heteroge-
neous multiprocessor platforms to cater to higher computation demands while adhering to
restrictions on power/energy dissipation. Scheduling schemes for safety-critical real-time
systems must be able to effectively utilize available resources of the underlying platform to
satisfy the resource constraints associated with the real-time task set.

3. Energy Minimization:
Energy consumption in real-time systems has become an important issue with the in-
crease in the number of processing elements. Effective energy management is important
for battery-powered embedded systems, such as those deployed in autonomous mobile
robots, wearable devices, industrial controllers, etc. Recharging or replacing batteries
in such systems is not always practical or feasible. Hence, effective energy management
can enhance the lifetime of the batteries resulting in higher performance and financial
advantages. Even for systems directly connected to the power grid, reducing energy con-
sumption provides significant monetary and environmental gains [34]. Scheduling schemes
for real-time systems must optimize the energy consumption satisfying other constraints
like timing, resource, precedence, etc.

4 Objectives

The principal aim of this dissertation has been to investigate the theoretical and practical as-
pects of co-scheduling strategies in safety-critical CPSs, keeping in view the challenges/hurdles
discussed in the previous section. In particular, the objectives of this work may be summarized
as follows:

1. Development of co-scheduling strategies for a set of independent periodic tasks executing
on a bus-based homogeneous multiprocessor system, with the objective of maximizing
system level Quality of Service (QoS ).

2. Design and implementation of QoS adaptive scheduling mechanisms for real-time systems
modeled as PTGs, on fully-connected heterogeneous multiprocessor system.

3. Development of optimal co-scheduling strategies for PTGs executing on a shared-bus
based heterogeneous distributed platform.

4. Design of energy-aware processor-bus co-scheduling strategy for the heterogeneous dis-
tributed CPS platforms, as mentioned above.
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5 Summary of work done

As part of this PhD research work, we have developed multiple scheduler design schemes for
real-time CPSs. The entire thesis work is composed of multiple contributions categorized into
four phases, each of which is targeted towards a distinct task/platform scenario.

1. Task Scheduling on Homogeneous Distributed Systems
CPSs, including those in the automotive domain, are often designed by assigning to
each task an appropriate criticality-based reward value that is acquired by the system
on its successful execution. Additionally, each task may have multiple implementations
designated as service-levels, with higher service-levels producing more accurate results
and contributing to higher rewards for the system.

This work proposes co-scheduling strategies for a set of independent periodic tasks execut-
ing on a bus-based homogeneous multiprocessor system, with the objective of maximizing
system level QoS. Each service-level of any task has a distinct computation demand (ser-
viced by one or more processors) and communication demand (serviced by a set of shared
buses) with higher service-levels having higher resource demands. Successful execution of
a task at a certain service-level is associated with a reward corresponding to that service-
level and this reward is proportional to the task’s relative importance/criticality. The
objective of the task allocation mechanism is to maximize aggregate rewards such that
both computation and communication resource demands of all tasks may be feasibly satis-
fied. The problem is posed as a Multi-dimensional Multiple-Choice Knapsack formulation
(MMCKP) and present a Dynamic Programming (DP) solution (called MMCKP-DP) for
the same. Although DP delivers optimal solutions, it suffers from significantly high over-
heads (in terms of running time and main memory consumption) which steeply increase
as the number of tasks, service-levels, processors and buses in the system grows. Even for
a system with a moderate task set consisting of 90 tasks, it takes approximately 1 hour
20 minutes and consumes a huge amount of main memory space (approximately 68 GB).
Such large time and space overheads are often not affordable, especially when multiple
quick design iterations are needed during design space exploration and/or powerful server
systems are not available at the designer’s disposal.

Therefore, in addition to the optimal solution approach, we propose an efficient but
low-overhead heuristic strategy called Accurate Low Overhead Level Allocator (ALOLA)
which consumes drastically lower time and space complexities while generating good
and acceptable solutions which do not significantly deviate from the optimal solutions.
ALOLA is a greedy but balanced heuristic service-level allocation approach that proceeds
level by level so that a high aggregate QoS may be acquired by the system at much lower
complexity compared to the optimal MMCKP-DP strategy. The mechanism starts by
storing all tasks in a max-heap (based on a key costi) and assigning base service-levels
to all tasks. The algorithm then proceeds by repeatedly extracting the task at the root
of the heap, incrementing its service-level by 1, updating its cost value and reheapifying
it, until residual resources are completely exhausted, or all the tasks have been assigned
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their maximum possible service-levels.

Our simulation based experimental evaluation shows that even on moderately large sys-
tems consisting of 90 tasks with 5 service-levels each, 16 processors and 4 buses, while
MMCKP-DP incurs a run-time of more than 1 hour 20 minutes and approximately 68
GB main memory, ALOLA takes only about 196 µs (speedup of the order of 106 times)
and less than 1 MB of memory. Moreover, while being fast, ALOLA is also efficient
being able to control performance degradations to at most 13% compared to the optimal
results produced by MMCKP-DP. Both the presented solution strategies (MMCKP-DP
and ALOLA) assume Deadline Partitioning Fair (DP-Fair) [20], a well known optimal
multiprocessor scheduler, as the underlying scheduling mechanism.

2. PTG Scheduling on Heterogeneous Distributed Systems
Continuous demands for higher performance and reliability within stringent resource bud-
gets is driving a shift from homogeneous to heterogeneous processing platforms for the
implementation of today’s CPSs. These CPSs are typically represented as PTGs due to
the complex interactions between their functional components and are often distributed
in nature. This work considers the problem of scheduling a real-time system modeled
as PTG, where tasks may have multiple implementations designated as service-levels,
with higher service-levels producing more accurate results and contributing to higher re-
wards/QoS for the system. In this work, we propose the design of ILP based optimal
scheduling strategies as well as low-overhead heuristic schemes for scheduling a real-time
PTG executing on a distributed platform consisting of a set of fully-connected heteroge-
neous processing elements.

First, we develop an ILP based optimal solution strategy namely, ILP - Service-level
Allocation with Timed Constraints (ILP-SATC ), which follows an intuitive design flow
and represents all specifications related to resource, timing and dependency, through a
systematic set of constraints. However, its scalability is limited primarily due to the
explicit manipulation of task mobilities between their earliest and latest start times. In
order to improve scalability, a second strategy namely, ILP - Service-level Allocation with
Non-overlapping Constraints (ILP-SANC ) has been designed. ILP-SANC is based on
the non-overlapping approach [1] which sets constraints and variables in such a way that
no two tasks executing on the same processor overlap in time. Further, in ILP-SANC
the total number of constraints required to compute a schedule for a PTG becomes
independent of the deadline of a given PTG, which helps to control complexity of the
proposed scheme. For example, given a PTG with seven tasks, each having two service-
levels and executes on a distributed system consisting of 2 heterogeneous processors,
ILP-SATC generates 7834 constraints and takes ∼2 seconds to find the optimal schedule.
On the other hand, ILP-SANC generates only 203 constraints and takes 0.06 seconds to
find the same solutions.

Though ILP-SANC shows appreciable improvements in terms of scalability over the ILP-
SATC, it still suffers from high computational overheads (in terms of running time) as the
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number of nodes in a PTG and/or the number of resources, increase. For example, given
a PTG with ∼20 tasks, each having three service-levels and executes on a distributed
system consisting of 8 heterogeneous processors, ILP-SANC takes ∼4 hours to find the
optimal schedule. It may be noted that such large time overheads may often not be
affordable, especially when multiple quick design iterations are needed during design
space exploration. Therefore, two low-overhead heuristics (i) Global Slack Aware Quality-
level Allocator (G-SAQA) and (ii) Total Slack Aware Quality-level Allocator (T-SAQA)
are proposed. Both G-SAQA and T-SAQA internally make use of PEFT [4], a well
known PTG scheduling algorithm on heterogeneous multiprocessor systems, to compute
a baseline schedule which assumes all task nodes to be at their base service-levels. Since
PEFT attempts to minimize schedule length, the resulting schedule length may be marked
by unutilized slack time before deadline.

The G-SAQA algorithm starts by using PEFT to compute task-to-processor mappings
as well as start and finish times of tasks, based on task execution times associated with
their base service-levels. If length of the obtained PEFT schedule violates deadline, then
the algorithm terminates as generation of a feasible schedule is not possible. Otherwise,
the available global slack (slackg = Deadline − PEFT makespan) is used to enhance
the tasks’ assigned service-levels in an endeavour to maximize achievable reward while
retaining task-to-processor mappings as provided by PEFT. The enhancement of task
service-levels happen in a service-level by service-level manner, starting with all tasks
situated at their base service-levels. At each step, the most eligible task is selected (from
the task set) for service-level upgradation by one. The selection of this task is based on
a prioritization key which is the ratio between gain in rewards and increase in execution
time to upgrade service-level from current to the next one.

Though G-SAQA follows an intuitive design flow, it only considers global slack (=
Deadline − PEFT makespan) to upgrade service-levels of tasks in the PTG. However,
a closer look at the PEFT schedule reveals that there exists gap within the scheduled
nodes of the PTG which could be used along with the global slack to achieve better
performance in terms of service-levels and delivered rewards compared to G-SAQA. It
may also be possible to consolidate multiple small gaps within the PEFT schedule into
larger consolidated slacks which may be used to further improve performance in terms
of achieved rewards. Therefore, the total slack available with a task at any given time
comprises of the global slack along with the maximum consolidated inter-node gap be-
tween the task and its successor on its assigned processor in the PEFT schedule. With
the above insights on the total task-level slacks available in a PTG, it proposes another
heuristic namely, T-SAQA with the objective of achieving better performance compared
to G-SAQA. The basic structure of T-SAQA is same as that of the G-SAQA algorithm
except the way it updates the start times of selected task node’s (selected for service-level
enhancement) descendants and slacks associated with the task nodes in the PTG. In par-
ticular, G-SAQA uniformly delays the start times of all descendant nodes of the selected
task and reduces the global slack value by the same amount. In this regard, it may be
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emphasized that T-SAQA works with distinct total slack values associated with the task
nodes in the PTG, instead of using a single global slack pool. By harnessing the total
slacks available with individual task nodes, T-SAQA updates the start and finish times of
only those descendant task nodes of the selected task, whose start times are impacted due
to the service-level upgradation of the selected task. Our simulation based experimental
results show that both the heuristic schemes (G-SAQA and T-SAQA) are about ∼106

times faster on an average than the optimal strategy ILP-SANC when number of tasks in
the PTG is ∼15, number of service-levels of each task is 3 and number of heterogeneous
processors in the system is 8. It also shows that both T-SAQA and G-SAQA returns at
most ∼30% and ∼45% less rewards than ILP-SANC, respectively. In all cases T-SAQA
outperforms G-SAQA in terms of rewards maximization while T-SAQA has more running
time than G-SAQA.

3. PTG Scheduling on Heterogeneous Distributed Shared Bus Systems
The PTG scheduling technique considered in the previous section assumed a fully con-
nected heterogeneous platform. Assumption of a fully connected platform helps avoid the
problem of resource contention, as is the case when the system is assumed to be associated
with shared data transmission channels. However, it may be appreciated that shared bus
networks form a very commonly used communication architecture in CPSs [35,36]. There-
fore, this work extend the problem of scheduling PTGs on fully-connected platforms, to
CPS systems where the processors are connected through a limited number of bus based
shared communication channels. In this work, we propose the design of ILP based opti-
mal scheduling strategies as well as low-overhead heuristic schemes for the scheduling of
real-time PTGs executing on a distributed platform consisting of a set of heterogeneous
processing elements interconnected by heterogeneous shared buses.

We first develop an Integer Linear Programming based solution strategy namely, ILP
with Explicit Time Reduced (ILP-ETR) to produce optimal schedules for real-time PTGs
executing on a distributed heterogeneous platform. ILP-ETR follows a comprehensive
design approach which represents all specifications related to resource, timing and depen-
dency, through a systematic set of constraints. Although ILP-ETR follows an intuitive
design flow, its scalability is limited primarily due to the explicit manipulation of task
mobilities between their earliest and latest start times. In order to improve its scalability,
we propose an improved ILP formulation namely, ILP with Non-overlapping Constraints
(ILP-NC ) based on the non-overlapping approach [1] which sets constraints and variables
in such a way that no two tasks executing on the same processor overlap in time. Exper-
imental results show that ILP-ETR takes ∼5 hours to compute the schedule of a PTG
with ∼20 nodes executing on a system with 4 processor and 2 buses, and the deadline
of the PTG is set to its optimal makespan. On the other hand, ILP-NC takes only ∼12
secs to compute schedule for the same. Again, ILP-ETR is unable to find optimal solu-
tion within 24 hours when the deadline of the PTG is increased by 25% of its optimal
makespan. In this case, ILP-NC takes only ∼12 seconds to find the optimal solution.

In addition to the two optimal ILP based approaches, we have designed a fast and
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efficient heuristic strategy namely, Contention Cognizant Task and Message Scheduler
(CC-TMS ) for the problem at hand. The CC-TMS is based on a list scheduling based
heuristic approach to co-schedule task and message nodes in a real-time PTG executing
on a distributed system consisting of a set of heterogeneous processors interconnected
by heterogeneous shared buses. The algorithm assigns priority to all nodes in the PTG
according to a parameter called, upward rank of each node. It then selects the highest
priority task node and computes the task’s EFT (Earliest Finish Time) values on each
processor while temporarily allocating parent message nodes to suitable buses. The task
is actually mapped on the processor where it has minimum EFT. Based on this selected
task-to-processor mapping the parent message nodes of the task node are assigned to
suitable buses. This process repeats until all task nodes are scheduled on processors. To
evaluate the performance of the CC-TMS with respect to optimal solutions, we define a
metric called Makespan Ratio as follows:

Makespan Ratio =
Optimal Makespan

Heuristic Makespan
× 100 (1)

Extensive simulation based experimental results show that CC-TMS achieves 97% and
58% (Makespan Ratio) in the best and worst case scenarios, respectively.

4. Energy-aware Scheduling for Systems Consisting of Multiple PTG Applica-
tions
The works done in the second and third phases deal with the co-scheduling of a single
task graph on heterogeneous distributed platform. In the current phase, we endeavour
towards the design of heterogeneous processor-shared bus co-scheduling strategies for a
given set of independent periodic applications, each of which is modelled as a PTG. In
particular, we have developed an ILP based optimal and heuristic strategy for the men-
tioned system model, whose objective is to minimize system level dynamic energy dissi-
pation. Obviously to achieve energy savings, the processors in the system are assumed
to be DVFS (Dynamic Voltage and Frequency Scaling) enabled and thus, the operating
frequencies of these processors can be dynamically reconfigured to a discrete set of al-
ternative frequency-levels at run-time. However, the ILP based optimal scheme called
ILP-ES (ILP for Energy-aware Scheduling) is associated with very high computational
complexity and is not scalable even for small problem sizes. Therefore, we propose an
efficient but low-overhead heuristic strategy called Slack Aware Frequency Level Allocator
(SAFLA) which consumes drastically lower time and space complexities while generating
good and acceptable solutions.

The SAFLA algorithm starts by using an efficient co-scheduling algorithm Task and
Message Co-scheduling (TMC ) which actually extend the CC-TMS algorithm (discussed
above) to schedule multiple periodic PTGs executing on a shared bus-based heterogeneous
distributed platform. This schedule is generated assuming all processor to be running at
their highest frequency for the entire duration of the schedule. SAFLA terminates with
failure if the schedule returned by TMC violates deadline. Otherwise, the available slack
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associated with each task node is used to enhance the tasks’ assigned frequency-levels in an
endeavour to minimize energy dissipation while retaining task-to-processor/message-to-
bus mappings as provided by TMC. Experimental results show that SAFLA is an effective
scheduling scheme and delivered handsome energy savings in most practical scenarios.

6 Organization of the Thesis

The thesis is organized into eight chapters. A summary of the contents in each chapter is as
follows:

• Chapter 1: Introduction
This chapter is introductory, discussing the motivation of our work.

• Chapter 2: Background on Real-time Systems
This chapter presents a background on real-time systems and various co-scheduling strate-
gies of real-time tasks and messages on distributed multiprocessor platforms. In particu-
lar, we try to present the vocabulary needed to understand the following chapters.

• Chapter 3: QoS Aware Scheduling of Independent Task Sets on Homogeneous Distributed
Systems
In the third chapter, we propose strategies for co-scheduling a set of independent periodic
tasks with multiple service-levels, executing on a bus-based homogeneous multiprocessor
system. The problem is posed as a Multi-dimensional Multiple-Choice Knapsack formu-
lation (MMCKP) and present a Dynamic Programming (DP) solution (called MMCKP-
DP) for the same. Although DP delivers optimal solutions, it suffers from significantly
high overheads (in terms of running time and main memory consumption) which steeply
increase as the number of tasks, service-levels, processors and buses in the system grows,
and severely restricts the scalability of the strategy. Therefore, in addition to the optimal
solution approach MMCKP-DP, we propose an efficient but low-overhead heuristic strat-
egy called Accurate Low Overhead Level Allocator (ALOLA) which not only consumes
drastically lower time and space complexities but also generate good and acceptable so-
lutions, which do not significantly deviate from the optimal solutions.

• Chapter 4: Optimal Scheduling of PTGs on Heterogeneous Distributed Systems
Research conducted in the fourth chapter deals with the optimal scheduling mechanism
of a real-time system modeled as PTG executing on a fully connected distributed hetero-
geneous platform. Here, tasks may have multiple implementations designated as service-
levels, with higher service-levels producing more accurate results and contributing to
higher rewards/QoS for the system. To solve the problem, an ILP based optimal solu-
tion approach namely, ILP-SATC, is proposed. Though the formulation of ILP-SATC
follows an intuitive design flow, its scalability is limited primarily due to the explicit
manipulation of task mobilities between their earliest and latest start times. In order to
improve scalability, a second ILP based strategy namely, ILP-SANC, has been designed.
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Instead of explicitly relying on task mobility based manipulations as ILP-SATC, ILP-
SANC guarantees that the executions of no two tasks in the system overlap in time on
the same processor. This modification in the design approach allows the constraint set in
ILP-SANC to be independent of the deadline of a given PTG.

• Chapter 5: Heuristic PTG Scheduling Strategies on Heterogeneous Distributed Systems
Though ILP-SANC in (Chapter 4) shows appreciable improvements in terms of scalabil-
ity over the ILP-SATC, it still suffers from high computational overheads (in terms of
running time) as the number of nodes in a PTG and/or the number of resources, increase.
Therefore in the fifth chapter, two low-overhead heuristic algorithms namely, G-SAQA
and T-SAQA, are proposed for the same problem as discussed in the previous (fourth)
chapter. The base-line heuristic, G-SAQA, is faster but returns moderately good solu-
tions. T-SAQA extends G-SAQA and deliver significantly better solution, albeit at the
cost of slightly higher time complexity.

• Chapter 6: PTG Scheduling on Shared-Bus Based Heterogeneous Platforms
In this chapter, we propose the design of ILP based optimal scheduling strategies as well
as low-overhead heuristic schemes for the co-scheduling of real-time PTGs executing on
a distributed platform consisting of a set of heterogeneous processing elements intercon-
nected by heterogeneous shared buses. To solve the problem, two ILP based strategies
namely, ILP-ETR and ILP-NC are proposed. Although, both the approaches produce
optimal solutions, ILP-NC suffers significantly lower computational overheads compared
to ILP-ETR. In addition to the optimal solution approaches, we propose a fast but ef-
fective heuristic strategy called CC-TMS which consumes much lower time and space
complexities while producing satisfactorily good solutions.

• Chapter 7: Scheduling Multiple Independent PTG Applications on Shared-Bus Platform
Chapter 7 deals with the energy-aware co-scheduling of multiple periodic PTGs executing
on a distributed platform consisting of heterogeneous processing elements and intercon-
nected through a set of heterogeneous shared buses. An ILP based optimal scheduling
strategy is proposed to minimize the overall system-level energy dissipation. Further, an
efficient, low-overhead heuristic strategy called SAFLA has been proposed for the problem
at hand.

• Chapter 8: Conclusion and Future Work
The thesis concludes with this chapter. A comparative analysis on the algorithms pre-
sented in the different contributory chapters has been carried out. We discuss the possible
extensions and future works that can be done in this area.
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