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Abstract

Sealed-Bid auctions are subject to bid-rigging attack by the coercer.

Receipt-free sealed-bid auction mechanisms are developed to prevent

bid-rigging. The prior receipt-free schemes assume the availability of

untappable channel between the bidders and the auction authorities.

However, it is often difficult and impractical to deploy untappable

channel in real senario. Moreover they also assume the authorities not

to be colluded, therefore no partial information of any bidder’s secret

is revealed. In this work we present a receipt-free sealed-bid auction

scheme where neither the untappable channel is used nor we assume

all authorities to be honest (there must be some honest authorities).

We design secure multi-party computation to provide receipt-freeness,

whereas deniable encryption followed by anonymous communication

is used to relax the requirement of untappable channel. Distributed

Key Generation is used for secure multiparty computation. We as-

sume a set of player executes the protocol to output a common public

key, where the secret key is shared among the players.

Keywords: Bid-rigging, Receipt-freeness, Incoercibility
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Chapter 1

Introduction

Auction is an efficient and convincing method to establish the price of goods and

trading the goods in the open market. In sealed-bid auction the bidders submit

their bids securely in closed envelop. The bids are remain secure until they are

not opened at the time of opening. During the opening the sealed envelopes are

broken and the bids are disclosed. The winning price and winner is determined

accordingly. Implementing the sealed-bid auction in the electronic domain, there

are many threats to the security of the system [6, 3] like: correctness, fairness,

privacy, nonrepudiation etc. Any adversarial activity that either corrupts the

bids or manipulates the output of the auction is mostly due to the naive im-

plementation of the system. The adversary may be the insider or outsider. The

misbehavior of the insider (e.g. colluded auctioneers who involved in the conspir-

acy with coercer) yields an improper auction where the coercing bidder takes the

advantage over others. Whereas the outsider attempts to corrupt the bids (sealed

bids) which yield to the failure of the system. The system is also in trouble when

the winner repudiates. There have been a number of schemes proposed for secure

electronic sealed-bid auction [26, 22, 24, 11, 25, 2]. Those scheme do not address

the problem of bid-rigging. Bid-rigging is the problem where the powerful entity

called coercer orders the other to bid at low price so that the coercer could win

the auction by quoting unreasonably low price (little higher that the other bid-

ders). When bid-rigging happens the auction fails to meet the true valuation of

the goods. The first proposal to prevent rigging was [18] where they introduced

the receipt-free mechanism in an Electronic Voting Protocol. Receipt-freeness is
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1.1 Survey

the inability of any entity to prove his secret value in a voting or auctioning sce-

nario. Most of the electronic sealed-bid auction, the bidder either publishes or

carries a commitment of his secret bid. The commitment plays the role of receipt

and is exploited by the coercer to determine the secret, even if the bidder is not

willing to disclose.

1.1 Survey

The first receipt-free sealed-bid auction was proposed by Abe, Suzuki in [1]. Their

scheme was base on secret-sharing over untappable channel. In their scheme the

bidder constructs n shares of his bid and securely communicates the shares to

the auctioneers over untappable channel. However the scheme fails to provide

receipt-freeness in presence of dishonest (colluded) auctioneers. Huang et al. [17]

proposed some improvement of Abe, Suzuki’s [1] scheme, but could not overcome

the problem of dishonest auctioneer. Chen, Lee [5] proposed another receipt-free

scheme based on homomorphic encryption. In their proposed scheme, bidder

along with seller construct the receipt-free bid over the untappable channel. Bid-

der and seller individually prove the validity of their operation. Chen et al.

argued that the seller would not be colluded due to benefit collision. However the

assumption is partially correct, as the seller may also be colluded when the item

to be sold is not the property of the seller (e.g. government of a country wants

to auction the mine sector). More over the auctioneer may open the bids and

determines the highest bid price before the scheduled opening period. Whereas

Her et al.[12] proposed another scheme of receipt-freeness, where the bidder has

to do registration prior to bidding. Nevertheless, if the Registering authority is

dishonest, the scheme fails to provide receipt-freeness. However Gao et al. [8]

in their proposed scheme used undeniable signature for providing incoercibility

in Electronic-Auction. The scheme demand all the bidders to be present during

opening. Later on Howlader, Ghosh, Pal [14] proposed a receipt-free scheme for

sealed bid auction using multiple sealer and single auctioneer. In their scheme,

the bidder’s secret bid is sealed by multiple sealers to form the receipt-free bid.

2



1.1 Survey

However the scheme fails to provide receipt-freeness as the verification carries the

receipt of the initial secret bid.

In Howlader et al. [16, 15] deniable encryption [4, 13] is used as a tool for

replacing the untappable channel, which was an essentially required in most of

the prior receipt-free mechanism. However the technique fails to prevent receipt-

freeness in the presence of dishonest authorities [15]. Latter on a “coercing re-

sistant MIX” was proposed for anonymous bidding. In this case, the authorities

receive anonymous bids from the bidder, hence could not corresponds the bid-

der “who-bid-what”. On the other hand, the bidder transmits deniable ciphers,

where he can plausibly deny his true value.

3



Chapter 2

Mathematical Concepts

In this chapter, we introduce the basic mathematical concepts which are used in

our work.

2.1 Number Theory

2.1.1 Set

In this section, we describe the fundamental discrete structure on which all other

discrete structures are built, namely, the set. Sets are used to group objects

together. Often, the objects in a set have similar properties. An axiomatic

definition of set is given below:

Definition: A set is an unordered collection of objects.

Definition: The objects in a set are called the elements, or members, of the set.

A set is said to contain its elements. Set can be represented in various way.

Example:

1. The set of natural numbers N = { 0, 1, 2, 3, . . . }

2. The set of integers Z = {. . . , -2, -1, 0, 1, 2, . . . }

3. The set of positive integers Z+ = {1, 2, 3, . . . }

4. The set of rational numbers Q = {p/q | p ∈ Z, q ∈ Z and q 6= 0}

5. The set of vowel V = {a, e, i, o, u}

4



2.2 Cyclic Group

2.1.2 Group

Definition: A group (G,⊕), is a set of elements with a binary operation denoted

by ⊕ that associates to each ordered pair (a, b) of elements in G an element (a⊕b)

in G, such that the following axioms are obeyed:

1. Closure: If a and b ∈ G, then a⊕ b ∈ G.

2. Associative: a⊕ (b⊕ c) = (a⊕ b)⊕ c for all a, b, c ∈ G.

3. Identity element: There exists a (unique) elemnet e ∈ G such that e⊕a =

a⊕ e = a for all a ∈ G. The element e is called the identity of G.

4. Inverse element: For each a ∈ G, there exists a (unique) element b ∈ G

such that a⊕ b = b⊕ a = e. The element b is called the inverse of a.

Order of a group: The order of a group G is the cardinality or number of

element in that group G.

Order of an element: The order of an element a in group G is the least positive

integer k such that ak is the identity.

2.1.3 Abelian Group

A group (G,⊕) is called abelian or commutative group if a ⊕ b = b ⊕ a for all

a, b ∈ G.

2.2 Cyclic Group

A group is Cyclic if every element of G is a power gk (k is an integer) of a fixed

element g ∈ G.

2.2.1 Generator:

Let g ∈ Z
∗

n, the order of g is the least positive integer i such that gi ≡ 1 mod n.

g will be called a generator of Z∗

n, if i, the order of g equals to φ(n), where φ(n)

is the cardinality of the set Z∗

n.

5



2.3 Ring

2.3 Ring

A ring R, sometimes denoted by {R,+,×}, is a set of elements with two binary

operations, called addition and multiplication, such that for all a, b, c ∈ R the

following axioms are obeyed.

1. R is an abelian group with respect to addition.

2. Closure under multiplication: If a and b belong to R, then ab is also

in R.

3. Associativity of multiplication: a(bc) = (ab)c for all a, b, c in R.

4. Distributive laws: a(b+ c) = ab+ ac for all a, b, c in R.

(a+ b)c = ac+ bc for all a, b, c in R.

2.4 Field

A field F , sometimes denoted by {F,+,×}, is a set of elements with two binary

operations, called addition and multiplication, such that for all a, b, c ∈ F the

following axioms are obeyed.

1. F is a ring.

2. Commutativity of multiplication: ab = ba for all a, b ∈ R.

3. Multiplicative identity: There is an element 1 in R such that a1 =

1a = a for all a in R.

4. No zero divisors: If a, b in R and ab = 0, then either a = 0 or b = 0.

5. Multiplicative inverse: For each a in F , except 0, there is an element

a−1 in F such that aa−1 = (a−1) a = 1.

6



2.5 Intractable Mathematical Problems

2.5 Intractable Mathematical Problems

2.5.1 Discrete Log Problem (DLP)

Let G, be a finite cyclic (multiplicative) group with cardinality n and a generator

g. Given an element a ∈ G, find an integer x (or the integer x with 0 ≤ x ≤ n−1)

such that a = gx in G. Finding the unique integer x is hard and x is the discrete

logarithm logg a.

Three different types of groups are commonly used for cryptographic appli-

cations: the multiplicative group of a finite field, the group of rational points on

an elliptic curve over a finite field and the jacobian of a hyperelliptic curve over

a finite field. Here we used DLP over finite fields.

2.5.2 Integer Factorization Problem (IFP)

Given the product n as a product of two distinct prime integers, it is computa-

tionally hard to determine the prime factors of n.

2.6 Cryptographic Algorithm (Asymmetric Cryp-

tography)

A form of cryptosystem in which encryption and decryption are performed using

two different keys, one of which is referred to as the public key and another one

is referred to as the private key.

Public Key: The public key is made public by the entity and used in conjunc-

tion with a corresponding private key.

Private Key: The private key is the secret key and only known to the entity

Following are two asymmetric encryption decryption algorithms:

2.6.1 The RSA Public-key Encryption Algorithm

The Ron Rivest, Adi Shamir and Leonard Adleman (RSA) algorithm [21] is based

on integer factorization problem. RSA algorithm are of three parts,

7



2.6 Cryptographic Algorithm (Asymmetric Cryptography)

• Key Generation (Algorithm 2.1).

• Encryption (Algorithm 2.2).

• Decryption (Algorithm 2.3).

Algorithm 2.1: RSA Key Generation

Input: A bit length l.

Output: A random RSA key pair

Steps:

1 Generate two different random primes p and q each of bit length l.

2 n := pq.

3 Choose an integer e coprime to φ(n) = (p− 1)(q − 1).

4 d := e−1(modφ(n)).

5 Return the pair (n, e) as the public key and the pair (n, d) as the private

key.

Algorithm 2.2: RSA Encryption

Input: The RSA public key (n, e) of the recipient and the plaintext

message m ∈ Zn.

Output: The ciphertext message c ∈ Zn.

Steps:

1 c := me(mod n).

Algorithm 2.3: RSA Decryption

Input: The RSA private key (n, d) of the recipient and the ciphertext

message c ∈ Zn.

Output: The recovered plaintext message m ∈ Zn.

Steps:

1 m := cd(mod n).

8



2.6 Cryptographic Algorithm (Asymmetric Cryptography)

2.6.2 The ElGamal Public-key Encryption Algorithm

The ElGamal public key encryption algorithm [7] is based on discrete log problem

(DLP) 2.5.1. The algorithm has three parts,

• Key Generation (Algorithm 2.4).

• Encryption (Algorithm 2.5).

• Decryption (Algorithm 2.6).

Let p is a prime number and G is the cyclic group of order p− 1. Let g ∈ G is a

generator of the group.

Algorithm 2.4: ElGamal Key Generation

Input: G, g

Output: A random ElGamal key pair.

Steps:

1 Generate a random integer d, 2 ≤ d ≤ k − 1.

2 Return h = gd as the public key and d as the private key.

Algorithm 2.5: ElGamal Encryption

Input: (G, g) and the ElGamal public key h, the plaintext message m ∈ G.

Output: The ciphertext message (r, s) ∈ H ×G (where H = 〈g〉).

Steps:

1 Generate a (random) session key d′, 2 ≤ d′ ≤ k − 1.

2 r := gd
′

.

3 s := mhd′ .

Unlike RSA, ElGamal is a random encryption, that is if the message m is

encrypted with the same public key for multiple times, ElGamal cipher differs

every time as the element d′ is selected randomly.

9



2.6 Cryptographic Algorithm (Asymmetric Cryptography)

Algorithm 2.6: ElGamal Decryption

Input: (G, g) and the ElGamal private key d, the ciphertext message

(r, s) ∈ H ×G.

Output: The recovered plaintext message m ∈ G.

Steps:

1 m := sr−d.

10



Chapter 3

Secret Sharing

3.1 How To Share a Secret

Shamir’s secret sharing is the threshold scheme, which is used to share a secret

within more than one party. A secret s is shared within n party such that k party

can recompute the secret s again, where k ≤ n.

3.1.1 Methodology

The scheme is based on polynomial interpolation: given n points in the 2-dimentional

plane (x1, y1), (x2, y2), . . . , (xk, yk) with distinct xi’s, there is one and only one

polynomial q(x) of degree k − 1 such that q(xi) = yi for all i.

Example: 2 points are sufficient to define a straight line, 3 points are sufficient

to define a parabola, 4 points to define a cubic curve and so on.

3.1.2 Problems

In Shamir’s secret sharing protocol [23] a trusted party (dealer) shares a secret

s ∈ Zp among the parties P1, . . . , Pn in the following way. The dealer chooses at

random a polynomial f(x) over Zp of degree k − 1, such that f(0) = s. He then

secretly transmits to each party Pi a share si = f(i) mod p. It is clear that k− 1

or less parties have no information about the secret while k can easily reconstruct

it by polynomial interpolation.

11



3.1 How To Share a Secret

3.1.3 Note to Distributed Secret Sharing

In the presence of malicious adversary, shamir’s secret sharing protocol could

fail. Indeed, it is possible for a dealer to share values which do not lie on a

polynomial of degree k − 1. Also dishonest parties may contribute incorrect

shares at reconstruction time. Verifiable secret sharing (VSS) protocols [19] are

intended to prevent this possibility.

However this scheme approach us to distributed secret sharing, where every party

act as a dealer and distribute shares to others of it’s secret.

12



Chapter 4

Distributed Key Generation

4.1 Introduction

Distributed key generation is a main component of threshold cryptosystems. It

allows a set of n servers to generate jointly a pair of public and private keys

according to the distribution defined by the underlying cryptosystem without ever

having to compute, reconstruct, or store the secret key in any single location and

without assuming any trusted party (dealer). While the public key is output in

the clear, the private key is maintained as a (virtual) secret shared via a threshold

scheme. For discret-log-based (dlog-based) schemes, distributed key generation

amounts to generating a secret sharing of a random, uniformly distributed value

x and making public the value y = gx.

4.2 Pedersen’s Verifiable Secret Sharing

The scheme uses the parameters p and q, are the two large primes such that q

divides p − 1, Gq is the unique subgroup of Z∗

p of order q, and g is a generator

of Gq. Another additional element h ∈ Gq. It is assumed that the adversary

cannot compute logg h. Let dealer will distribute it’s secret s ∈ Zq. The scheme

as follows:

1. Dealer publishes a commitment to s : E0 = E(s, t) for a randomly chosen

13



4.3 Pedersen Threshold Cryptosystem

t ∈ Zq, where

E(s, t) = gsht

2. Dealer chooses F ∈ Zq[x] of degree at most k − 1 satisfying F (0) = s, and

computes si = F (i) for i = 1, . . . , n.

Let F (x) = s+ F1x+ · · ·+ Fk−1x
k−1. Dealer chooses G1, . . . , Gk−1 ∈ Zq at

random and uses Gi when committing to Fi for i = 1, . . . , k − 1.

3. Let G(x) = t + G1x + · · · + Gk−1x
k−1 and let ti = G(i) for i = 1, . . . , n.

Then dealer sends (si, ti) secretly to Pi for i = 1, 2, . . . , n.

4. Dealer compute,

Ej =E(Fj, Gj)

=gFjhGj

and broadcast Ej, for j = 1, . . . , k − 1.

When Pi has received his share (si, ti) he verifies that

E(si, ti)
?
=

k−1
∏

j=0

Eij

j mod p (4.1)

If a party Pi holds a share that does not satisfy equation 4.1 then he complains

against the dealer. The dealer reveals the share (si, ti) matching equation 4.1 for

each complaining party Pi. If any of the revealed shares fails this equation, the

dealer is disqualified.

4.3 Pedersen Threshold Cryptosystem

Pedersen shown how the private key x is distributed such that any k or more

members can find it. The scheme uses the parameters p and q, are the two large

primes such that q divides p− 1, Gq is the unique subgroup of Z∗

p of order q, and

g is a generator of Gq. The dealer Pi distributes xi as follows:

14



4.4 Distributed Key Generation (DKG)

1. Pi chooses at random a polynomial fi(z) ∈ Zq(z) of degree at most k − 1

such that fi(0) = xi. Let

fi(z) = fi0 + fi1z + · · ·+ fi,k−1z
k−1

where fi0 = xi.

2. Pi computes Fij = gfij for j = 0, . . . , k − 1 and broadcasts (Fij)j=1,...,k−1

(Fi0 = hi is known beforehand).

3. When everybody have sent these k − 1 values, Pi sends sij = fi(j) secretly

and a signature on sij to Pj for j = 1, . . . , n (in particular Pi keeps sii).

4. Pi verifies that the share received from, Pj(sji) is consistent with the pre-

viously published values by verifying that

gsji
?
=

k−1
∏

l=0

F il

jl

If this fails, Pi broadcasts that an error has been found, publishes sij and

the signature and then stops.

5. Pi computes his share of x as the sum of all shares received in step 3

si =
∑n

j=1
sji.

4.4 Distributed Key Generation (DKG)

Distributed Key Generation (DKG) protocol allows a set of Players to generate a

pair of public, private key. The public key is output in clear and the corresponding

private key is shared among the players with (t-n) secret sharing [23]. Unlike

Shamir’s secret sharing [23], DKG does not assume any trusted party (Dealer)

for compute and reconstruct the shares and secret respectively. DKG protocol

successfully outputs the desire keys even there is an adversary who can corrupt

at most t−1 Players to executes the protocol as instructed by the adversary. The

secret sharing is verifiable if the protocol meets the following two requirements:

1. After receiving a share sij from Player Pi, the receiver Pj must be able to

verify whether or not the share is a valid piece of the secret of Pi.
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4.4 Distributed Key Generation (DKG)

2. There is no perceivable advantage of determining the secret by randomly

selecting any less than t number of shares.

Torben Pryds Pedersen [20] first proposed the verifiable DKG for discrete log

base cryptosystem. The basic idea of the protocol is as follows:

• Players {P1, P2, . . . , Pn} with their randomly selected secret {s1, s2, . . . , sn}

respectively, initiate the protocol.

• Every Player Pj receives the share of the secret of Pi as sij and computes

its secret as xj =
∑n

i=1
sij.

• The public key is output as, h = g
∑n

i=1
si .

• Decryption would be done by a quorum of at least t > n/2 Players.

4.4.1 Pedersen’s Distributed Key Generation Protocol

Pedersen’s protocol is verifiable where every Player checks whether or not the

received shares are the correct pieces of the sender’s secret. If the verification

determines a Player as cheater, the protocol disqualifies the Player and the public

key is output without the component of the cheating Player. The protocol is as

follows:

1. Each Player Pi takes a random t− 1 degree polynomial fi(x) =
∑t−1

k=0
aikx

k

over Z∗

p where ai0 = si.

2. Player Pi computes Eik = gaik , for k = 0, 1, . . . , t and broadcasts Eik.

3. After all players has broadcast their Eij, every Player Pi computes the share

of his secret for player Pj as sij = fi(j) and secretly transmits the share to

Player Pj .

4. Player Pj verifies the share received from Pi is consistent by checking

gsij =
t−1
∏

k=0

(Eik)
jk mod p

16



4.4 Distributed Key Generation (DKG)

If Player Pj computes a failure of the Pi’s share, he complains against Pi.

To Player Pi reveals his shares sij against every complains to satisfy the

verification otherwise disqualified.

5. After having a defined set of qualifying Players (QUAL), the public key is

determined as hs =
∏

i∈QUAL Ei0

6. Player Pi sets his secret share as xi =
∑

j∈QUAL sji

Pedersen’s DKG protocol allows the adversary to bias the output key (public

& private) to a non-uniform distribution. As the value of the private secret

depends on the definition of QUAL and the adversary can see all the broadcast

information beforehand, it is shown in [10] that the adversary who controls some

Players to react after seeing all the public information such that the Player may

either qualifies or disqualifies. In fact Pedersen’s DKG determines the QUAL

after outputting the keys. Later on [9, 10] proposed a new DKG based on the

Pedersen’s scheme.

4.4.2 New Distributed Key Generation

In the new DKG, the QUAL is determines first then the private and public values

are generated. The new DKG is as follows:

1. Determining QUAL and private secret:

(a) Each Player Pi randomly chooses two polynomials of degree t − 1 as

fi(x) =
∑t−1

j=0
aijx

j and f́i(x) =
∑t−1

j=0
áijx

j. Let ai0 = si. Player Pi

broadcasts Eik = gaikháik mod p, for k = 0, 1, . . . , t− 1.

(b) Player Pi computes the share (sij = fi(j), śij = f́i(j)) and secretly

sends to Player Pj.

(c) Player Pj verifies the consistency of the Pi’s share as

gsijhśij ?
=

t−1
∏

k=0

(Eik)
jk mod p

Player Pj complains against Pi if the check fails.

17



4.4 Distributed Key Generation (DKG)

(d) Player Pi broadcasts (sij, śij) if there is a complain launched by Pj .

The Player Pi disqualifies if either (1) there is more than t−1 complains

against Pi or (2) (sij, śij) reviled by Pi is falsify.

(e) The QUAL is determined with the qualifying set of Players.

(f) Each Player Pi computes his secret share xi =
∑

j∈QUAL sji

2. Determining the public key using Pedersen’s DKG

(a) Each Player Pi∈QUAL, broadcast Cik = gaik mod p, for k = 0, 1, . . . , t−

1.

(b) Each Player Pj∈QUAL, verifies the values broadcast by other Players

Pi∈QUAL as:

gsij
?
=

t−1
∏

k=0

(Cik)
jk

Pj complains against Player Pi if the check fails for Player Pi and

publicly announces the sij, śij .

(c) If the complain against Pk is valid, the QUAL is reconfigured as

QUAL = QUAL− Pk.

(d) The Players Pi ∈ QUAL recompute their private secret xi =
∑

j∈QUAL sji.

The public key is output as hs =
∏

i∈QUAL Ci0 for i ∈ QUAL
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Chapter 5

Application of Disributed Key

Generation (DKG) in Sealed-Bid

Auction

5.1 Introduction

Sealed-Bid auctions are subject to bid-rigging attack by the powerful entity called

coercer. Bid-rigging is the problem where coercer orders the other to bid at

low price so that the coercer could win the auction by quoting unreasonably

low price (little higher that the other bidders). When bid-rigging happens the

auction fails to meet the true valuation of the goods. Receipt-free sealed-bid

auction mechanisms [14] are developed to prevent bid-rigging. Receipt-freeness

is the inability of any entity to prove his secret bid. The [14] shceme is based

on multi-party computation and the entities are bidder, sealer and auctioneer.

The mechanism is with a group of n sealers. At the time of sealing every sealer

is needed to seal. The mechanism fails if any sealer is unavailable. We use a

threashold cryptosystem (k − n) on sealers. The protocol will be successfull in

the preasence of any k sealers where k ≤ n.
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Figure 5.1: Setting of Sealed-Bid Auction

5.2 Problem and Parameters

The proposed receipt-free mechanism is based on multi-party computation where

the entities are as follows:

Bidder who bids. We assume there are m number of bidders and represent

the set of bidders as B = B1, B2, . . . , Bm. We also assume that the bidders bid

honestly.

Sealer acts as an authority who performs the sealing operation to form receipt-

free bid. There finite number of sealers and we assume that as n. The sealer set

is represented as S = S1, S2, . . . , Sn There may some colluded sealers.

Auctioneer computes and determines the winning price, during opening. The

winner proves his winning price to the auctioneer. If the winning bidder not

responds, the auctioneer along with the sealers determines the repudiating bidder.

Coercer is the powerful entity who indulge bid-rigging. We assume the coerce

to be powerful enough to demand all the keys and randomness of the bidders

after the bidding phase. Coercers can intercept the communication at any point

of time. We also assume the existence of some colluded authorities who may leak

some information that yield coercing. However, we assume that coercer does not

able to control the bidders at the time of their casting.
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5.3 Protocol

We consider the setting as shown in the figure 5.1. The bidder Bi computes

his secret bid vector as Γi and reencrypts with Deniable Encryption to form a

deniable cipher. The deniable cipher are communicated to the sealer (QRM)

Coercion Resistant Mix [15]. The deniable encryption followed by anonymity

prevent the coercers to coerce the bidder.

If the coercer eavesdrop the channel to capture the secret bid, Deniable En-

cryption allows the bidders to produce a fake bid and get ried of coercing. On the

other hand the colluded authorities could convey a secret bid to the coercer, but

could not corresponds the bidders with their bids as theMix produces anonymous

output.

5.3 Protocol

5.3.1 System Setting

Let p and q denote large primes such that q divides p − 1, Gq is the unique

subgroup of Z∗

p of order q, and g ∈ Z
∗

p is an element of order q. Following are the

description of the key pairs of different entities.

• Bidder Bi’s private key is xBi
and public key is hBi

= gxBi .

• Auctioneer A’s private key is xA and public key hA = gxA .

• k Sealers execute the Distributed Key Generation (DKG) 4.4 protocol and

output a set of qualifying sealers QUAL with the public key hS. Each

member Si ∈ QUAL has his private key as xi such that any quorum of

t > k/2 sealers QRM ⊆ QUAL is able to seal the bidder’s encrypted bid-

vectors. Without loss of generality, we assume that QRM = {S1, S2, ..., St}.

Sealer Si ∈ QRM configures his sealing key as xSi
= λijxi where λij

1 is

the Lagrange interpolation coefficient.

• Sealer Si ∈ QRM publishes his public key for sealing as hSi
= gxSi .

• We denote hS/S1,S2,...,Sr
= hS(hS1

hS2
. . . hSr

)−1.

1Lagrange interpolation coefficient for the i
th point is λij =

∏

i6=j

x−xj

xi−xj
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5.4 Receipt-free sealed-bid auction mechanism

• gy ∈ Z
∗

p is a generator indicates ‘YES Mark ’.

• A price list P = {p1, p2, . . . , pn} in ascending order is published by the

auctioneer.

5.4 Receipt-free sealed-bid auction mechanism

The proposed receipt-free mechanism consists of three phase: Bidding,Opening

and Trading.

5.4.1 Bidding Phase:

Bidding operation is performed in three steps:

• Constructing the encrypted bid vector,

• Sealing the bid-vector,

• Bid verification.

5.4.1.1 Constructing the encrypted bid vector

Each bidder Bi decides his bidding price pj ∈ P and computes the encrypted bid

vector as,

iΓj =(iXj,i Yj)

=

{

girj , hirj
A .hirj

S . (iGy)
irj if pj = jth price ∈ P

girj , hirj
A .hirj

S otherwise

for every price 1 ≤ j ≤ n, Bi randomly select irj ∈R Z
∗

p and computes the bid

vector. Bidder Bi puts his ‘Signed YES Mark ’ at the jth price as (iGy)
irj , where

iGy = g
xBi
y . The operator ‘.’ is multiplication in Z

∗

p. Bi sends the encrypted bid

vector to a predefined QUAL over a “Coercing Resistant Mix”.
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5.4 Receipt-free sealed-bid auction mechanism

5.4.1.2 Sealing the bid-vector

We assumed a QUAL is predefined. Sealing would be performed by any k/2 <

t ≤ k number of sealers from the QUAL. The set of such t sealers is called quorum

QRM . Without losing any generality, consider that QRM consists of t sealers

{S1, S2, ..., St}. It is not mandatory to execute the sealing operation sequentially,

but for the simplification we assume that sealing is done sequentially (e.g. S1

followed by S2 followed by S3 etc.)

1. After receiving encrypted bid-vector 〈iΓj〉, sealer S1 partially seal the bid-

vector as 〈iΓj,S1
〉, where iΓj,S1

= {iXj,S1
,i Yj,S1

} and

iXj,S1
=girj,S1 .iXj

=girj+irj,S1

iYj,S1
=irj,S1

. girj,S1 .h
irj,S1

A .h
irj,S1

S/S1
. (iXj)

−xS1 .iYj

=irj,S1
.girj,S1 .h

irj,S1

A .h
irj,S1

S/S1
.h

−irj
S1

.hirj
S .hirj

A .iGj

=irj,S1
.girj,S1 .h

irj+irj,S1

A .h
irj,S1

S/S1
.hirj

S/S1
.iGj

=irj,S1
.girj,S1 .h

irj+irj,S1

A .h
irj+irj,S1

S/S1
.iGj

for every price 1 ≤ j ≤ n, sealer S1 randomly selects irj,S1
∈R Z

∗

p. We

denote iGj = {1, (iGy)
irj}. Sealer S1 forwards the partially sealed bid to

the next sealer S2.

2. After receiving the partial sealed bid-vector 〈iΓj,S1
〉, sealer S2 further sealed

the bid-vector as 〈iΓj,S2
〉, where iΓj,S2

= {iXj,S2
,i Yj,S2

} and

iXj,S2
=girj,S2 .iXj,S1

=g
irj+

2
∑

l=1

irj,Sl

iYj,S2
=irj,S2

. girj,S2 .h
irj,S2

A .h
irj,S2

S/S1,S2
. (iXj,S1

)−xS2 .iYj,S1

=irj,S2
.girj,S2 .h

irj,S2

A .h
irj,S2

S/S1,S2
.h

−(irj+irj,S1
)

S2
.irj,S1

.girj,S1

.h
irj+irj,S1

A .h
irj+irj,S1

S/S1
.iGj

=
(

2
∏

l=1

irj,Sl

)

.g

2
∑

l=1

irj,Sl
.h

irj+
2
∑

l=1

irj,Sl

A .h
irj+

2
∑

l=1

irj,Sl

S/S1,S2
.iGj
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5.4 Receipt-free sealed-bid auction mechanism

for every price 1 ≤ j ≤ n, sealer S2 randomly selects irj,S2
∈R Z

∗

p. Sealer

S2 forwards the partially sealed bid to S3 and so on. In this way the last

sealer St receives the partial sealed bid-vector 〈iΓj,St−1
〉.

3. After receiving partial sealed bid-vector 〈iΓj,St−1
〉, sealer St finally sealed

the bid-vector as 〈iΓj,St
〉, where iΓj,St

= {iXj,St
,i Yj,St

} and

iXj,St
=girj,St .iXj,St−1

=g
irj+

t
∑

l=1

irj,Sl

iYj,St
=irj,St

. girj,St .hirj,St

A .hirj,St

S/S1,S2,...,St
.
(

iXj,St−1

)

−xSt .iYj,St−1

=
(

t
∏

l=1

irj,Sl

)

.g

t
∑

l=1

irj,Sl
.h

irj+
t
∑

l=1

irj,Sl

A .h
irj+

t
∑

l=1

irj,Sl

S/S1,S2,...,St
.iGj

=
(

t
∏

l=1

irj,Sl

)

.g

t
∑

l=1

irj,Sl
.h

irj+
t
∑

l=1

irj,Sl

A .iGj

for every price 1 ≤ j ≤ n, sealer St randomly selects irj,St
∈R Z

∗

p.

At least k/2+1 sealer have to perform the sealing to form the receipt-free sealed-

bid.

5.4.2 Bid Verification

After performed the sealing by QRM , the sealed bid is published in the public

board. Receipt-freeness does not allow the bidders to prove bidding values, but

allows the bidders to verify whether their bids have been correctly sealed or not.

The verification of bid is done with the response attached by the sealers with the

bid vector.

1. The first sealer S1 computes the response of the bidder Bi’s sealing as iRS1
,
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5.4 Receipt-free sealed-bid auction mechanism

where

iR =iX1.iX2 . . . iXn

=g

n
∑

j=1

irj

iRS1
=
(

n
∏

j=1

irj,S1

)

.g

n
∑

j=1

irj,S1

.iR

=
(

n
∏

j=1

irj,S1

)

.g

n
∑

j=1

irj,S1

.g

n
∑

j=1

irj

=
(

n
∏

j=1

irj,S1

)

.g

n
∑

j=1

(irj+irj,S1
)

and forwards to the next sealer S2.

2. Sealer S2 computes his response as,

iRS2
=
(

n
∏

j=1

irj,S2

)

.g

n
∑

j=1

irj,S2

.iRj,S1

=
(

n
∏

j=1

2
∏

l=1

irj,Sl

)

.g

n
∑

j=1

(

irj+
2
∑

l=1

irj,Sl

)

and forwards to S3.

3. Thus after t sealing the response is computed as,

iRSt
=
(

n
∏

j=1

irj,St

)

.g

n
∑

j=1

irj,St

.iRSt−1

=
(

n
∏

j=1

t
∏

l=1

irj,Sl

)

.g

n
∑

j=1

(

irj+
t
∑

l=1

irj,Sl

)

and published on the public board.

For every bidder Bi, Auctioneer A computes iX for i = 1, 2, ...,m where,

iX =

(

n
∏

j=1

iXj,St

)xA

=h

n
∑

j=1

(

irj+
t
∑

l=1

irj,Sl

)

A
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5.4 Receipt-free sealed-bid auction mechanism

and writes on public board.

Bidder Bi checks, validity of his bid-vector as follows:

1. Bidder Bi computes iC where,

iC =
n
∏

j=1

iYj,St
.iX

−1

=

(

n
∏

j=1

t
∏

l=1

irj,Sl

)

.g

n
∑

j=1

t
∑

l=1

irj,Sl

.iGj

2. Bidder Bi verifies

iC.iR
?
= iRSt

.iGj

If bidder Bi fails to verify his sealed bid, it raises a complain.

5.4.3 Opening Phase

After successfully executing the bidding phase, the bids are opened as per the

scheduled time. The bids are opened in descending order (for highest price Auc-

tion). That is auctioneer first open the nth price, if no one bids, then open the

(n− 1)th price and so on until there is ‘YES Mark ’ for the jth price. Opening of

jth price is as follows:

1. All sealers Sl ∈ QUAL compute Vj,Sl
, where,

Vj,Sl
=

m
∏

i=1

(irj,Sl
.girj,Sl )

and send to auctioneer A until the winning price is determined.
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5.4 Receipt-free sealed-bid auction mechanism

2. (a) Auctioneer A computes Vj and Yj where,

Vj =
t
∏

l=1

Vj,Sl

=
t
∏

l=1

m
∏

i=1

(irj,Sl
.girj,Sl )

=

(

m
∏

i=1

t
∏

l=1

irj,Sl

)

.g

m
∑

i=1

t
∑

l=1

irj,Sl

Yj =
m
∏

i=1

{

iYj,St
.(iXj,St

)−xA
}

=

(

m
∏

i=1

t
∏

l=1

irj,St

)

.g

m
∑

i=1

t
∑

l=1

irj,Sl
.

m
∏

i=1

iGj

(b) Auctioneer A compute Gj where,

Gj =Yj.(Vj)
−1

=
m
∏

i=1

iGj

(c) Auctioneer A declear jth price as the winning price if,

Gj 6= 1

5.4.4 Trading:

After declaration of winning price, bidder Bi claims his victory with his ‘YES

Mark ’ (iGy) and ‘Signed YES Mark ’ (iGw). Let w is the winning price.

1. In case of single winner auctioneer A verifies the winner,

Gj
?
= iGw

If the verification succeed, auctioneer declares Bi as winner.

2. However for multiple winner, auctioneerA and biddersBi ∈ Claimed Winner

individually execute two interactive zero-knowledge proof s to satisfy,
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5.4 Receipt-free sealed-bid auction mechanism

(a) iGy and hBi
has common exponent,

(b) iXw and iGw has common exponent.

3. After successful executing the zero-knowledge proof by multiple bidders,

auctioneer A verifies the following:

∏

i=claimed
winners

iGw
?
= Gj

If the verification succeed, auctioneer declares the claimed bidders as win-

ners.
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Chapter 6

Analysis of Receipt-Free

Sealed-Bid Auction

6.1 Receipt-Freeness

The quorum (QRM) receives the encrypted bids anonymously. Therefore, even

the recipient of any encrypted bids is colluded (i.e. intend to convey the encrypted

bids iΓj to the coercer), then also the coercing is insignificant as the colluded

entity could not resolve “who-encrypts-what”. On the other hand, the sealed-

bids are receipt-free as the sealing operation engraves randomness of the sealers

Sl ∈ QRM . The scheme guarantees receipt-freeness if at least one of the sealer

in QRM is honest.

Deniable Verifiability: Bidder has to compute iC during verification of his

sealed bid. In that case bidder need not to disclose the position of the ‘YES

Mark ’. For example, let bidder Bi has ‘YES Mark ’ on jth price but during the

verification he can plausibly deny and show that ‘YES Mark ’ is in some i 6= jth

position.

Bidder can prove to coerer, that the ‘signed YES Mark ’ is at ith position, as

the marks are in product form.
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6.2 Non-Repudiation

6.2 Non-Repudiation

The auction scheme determine the winning price, not the winner. So winning-

bidder may keep silent (repudiate). The auction scheme is able to identify the

winning-bidder in case of repudiation. The procedure as follows:

Let wth price is the winning price. Auctioneer asks all sealers (member of

QRM) to write the initial encrypted bid-vector for wth price, that is 〈iΓw〉 on

the public board. Every sealer Sl ∈ QRM , computes hirw
Sl∈QRM

= iX
xSl
w (where

xSl
is the sealing key of sealer Sl) and writes on the public board against 〈iΓw〉.

Auctioneer computes the ‘Mark’ of the bidder Bi as,

iGw =iYw.

{

iX
xA
w

∏

l∈QRM

hirw
Sl

}

−1

The mark would be either ‘No Mark ’ = 1 or ‘Signed YES Mark ’ = (iGy)
irw .

The auctioneer asks all bidders to compute ‘Signed YES Mark ’ for wth price,

i.e, (iGy)
irw , and execute interactive zero-knowledge proof, to verify that (iGw)

irw

and iXw has same exponent as irw. If the marking of a bid 〈iΓw〉 is X 6= 1 then

there should be at least one bidder Bi for which the ‘Signed YES Mark ’ is also

X. Thus the repudiating bidder could be identified.

6.3 Correctness

6.3.1 Publicly Verifiable Opening

Let auctioneer executes the opening and declare the jth price as the winning

price. Any one (insider/outsider) will be able to verify the winning price. Let

an outsider P wants to verify the winning price. It will go through the following

steps:
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6.3 Correctness

1. P will compute,

PYj =
m
∏

i=1

iYj,St

=
(

m
∏

i=1

t
∏

l=1

irj,Sl

)

.g

m
∑

i=1

t
∑

l=1

irj,Sl
.h

m
∑

i=1

(

irj+
t
∑

l=1

irj,Sl

)

A .
m
∏

i=1

iGj

PXj =
m
∏

i=1

iXj,St

=g

m
∑

i=1

(

irj+
t
∑

l=1

irj,Sl

)

from public board. P will ask to auctioneer to sign blindly on PXj and let

the value become,

APXj =h

m
∑

i=1

(

irj+
t
∑

l=1

irj,Sl

)

A

2. Now P gets VjSl
is the composite randomness for all the jth bids by sealer

Sl, on the bulletin board and will compute,

PVj =
t
∏

l=1

Vj,Sl

=
t
∏

l=1

m
∏

i=1

(irj,Sl
.girj,Sl )

=

(

m
∏

i=1

t
∏

l=1

irj,Sk

)

.g

m
∑

i=1

t
∑

l=1

irj,Sk

3. Finally P will verify,

PYj. (APXj)
−1 ?

= PVj

6.3.2 Adversary

Adversary may corrupt the bid vector. Here we assume that the bidders are

honest during bidding. Moreover coercer would not gain any advantage by, cor-

rupting bidder’s bid vector due to the benefit collision. So only some insider (i.e,
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Y... Y ...

i j j+k

−1Y

Figure 6.1: Bid Corruption

sealer) may corrupt bidder’s bid. For example, let Bi’s bid vector having the

‘YES Mark ’ at jth position as shown in figure 6.1. An adversary may corrupt the

bid by putting ‘YES Mark ’ at some j + kth position. At the same time adversary

nullify his corruption by putting ‘Y ES−1 Mark ’ as some other place.

At the time of verification bidder would not be able to verify that his bid

vector has been corrupted. During opening, auctioneer will compute the j + kth

price as the winning price. Auctioneer moves for repudiation check. As repudia-

tion check does not able to identify any bidder, therefore Auctioneer moves for

further opening. Therefore, any corruption only delays the opening, but can not

victimize any bidder.

6.4 Efficiency

The efficiency of the receipt-free sealed-bid auction scheme depends on the bid-

ding time and the sealing operation of the bidder and sealer respectively . The

simulation result in Figure 6.2 shows the bidding time with verifying price range

and key size 256, 512, 768 and 1024 bits. In each cases increasing the key size by

256 bits the bidding time increased by approximately three times in order.

The second simulation result Figure 6.3 shows the time required to perform

a single sealing operation of a sealer with varying price range and varying key

256, 512, 768 and 1024. Like bidding time, the time for sealing operation is also

increased by approximately three times in order.
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Figure 6.2: Bidding Time
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Figure 6.3: Sealing Time
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6.5 Overhead of Message Passing for Misbehaviors in Distributed
Key Generation

6.5 Overhead of Message Passing for Misbehav-

iors in Distributed Key Generation

The DKG protocol executes in a broadcast manner. Therefore, there are many

message exchange between the players. The number of messages increased as

the number of player misbehaves. Here we analyze the overhead of message

exchanging in context of misbehaving players. Let there are n players among

them k players misbehaves. Now, k misbehaving players each may send false share

to t other players where t = 1, 2, . . . , (n − 1). When a player Pi communicates

false share, then Pi broadcast (n − 1) complains against Pj. On the other hand

Pj broadcast (n− 1) messages with his secrets share. So one misbehavior causes

2(n − 1) message overhead. Therefore k misbehavior causes 2(n − 1)k message

overhead. In this sequel, if there are n players with k misbehaving players, where

each k players misbehaves with t other then the total message overhead is 2(n−

1)kt.
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Conclusion

The proposed Receipt-free sealed bid auction scheme is based on multiple entity

threshold trust model. The scheme involves multiple sealers and one auctioneer.

An qualifying set of sealers (QUAL) is defined beforehand, by executing the

Distributed Key Generation protocol within the sealers. A subset of the QUAL,

called Quorum QRM , performs sealing of bids. The bidder uses the public key

of the QUAL to form his encrypted bid-vector, whereas the decryption key is

shared among the members of QRM . Our proposed scheme guarantees the,

• Exemption of untappable channel.

• Receipt-freeness.

• Verifiability.

• Non-Repudiation.

7.1 Further Work

The proposed scheme defines a price list as a linear array of Minimum to Maxi-

mum price. The computation and space complexity is proportional to the length

of the price list. For example if

• Let key size is 512 bit.
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Figure 7.1: Decimal representation of bid vector.

– For price list 1000, bidding time is 3223 milisecond, and sealing time

is 7856 milisecond.

– For price list 10000, bidding time is 29995 milisecond, sealing time is

75408 milisecond.

• Let key size is 512 bit.

– For 512 bit key and 1000 price list, the bit vector would be 512*1000*2

bits.

– For 10000 price list, the bid vector would be 512*10000*2 bits.

The scheme may be further improved if the price list is designed as Multiple

Decimal Price Vector (MDPV). In MDPV each vector represents one decimal

position. For example the ith vector represents 10i−1 decimal position. The

example in 7.1 ‘Yes Mark ’ of 7319 is represented in MDPV. The top vector

represents the 103 decimal position. That is the left most cell of the top vector

represents 0 × 103, next cell represents 1 × 103 and so on. Therefore increase of

the price list with a multiple of 10 results an increment of additional 10 entities

in MDPV. The future work may comprise to modify the scheme to fit the idea in

receipt-free sealed-bid auction.
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[2] Mihály Bárász, Péter Ligeti, László Mérai, and Daniel A. Nagy. Anonymous

sealed bid auction protocol based on a variant of the dining cryptographers’

protocol. Periodica Mathematica Hungarica, 65(2):167–176, 2012. 1

[3] Colin Boyd and Wenbo Mao. Security Issues for Electronic Auctions. HP

Laboratories technical report. Hewlett-Packard Laboratories, 2000. 1

[4] Ran Canetti, Cynthia Dwork, Moni Naor, and Rafail Ostrovsky. Deniable

encryption. In CRYPTO 97, pages 90–104, 1997. 3

[5] Xiaofeng Chen, Byoungcheon Lee, and Kwangjo Kim. Receipt-free electronic

auction schemes using homomorphic encryption. In ICISC, LNCS 2971,

pages 259–273. Springer, 2003. 2

[6] Matthew K. Franklin and Michael K. Reiter. The design and implementa-

tion of a secure auction service. IEEE TRANSACTIONS ON SOFTWARE

ENGINEERING, 22(5):302–312, 1996. 1

[7] Taher El Gamal. A public key cryptosystem and a signature scheme based on

discrete logarithms. IEEE Transactions on Information Theory, 31(4):469–

472, 1985. 9

[8] Chongzhi Gao, Zheng an Yao, Dongqing Xie, and Baodian Wei. Electronic

sealed-bid auctions with incoercibility. In Electrical Power Systems and Com-

puters, LNEE 99, pages 47–54. Springer, 2011. 2

37



REFERENCES

[9] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure

distributed key generation for discrete-log based cryptosystems. In EURO-

CRYPT, LNCS 1592, pages 295–310. Springer, 1999. 17

[10] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure

distributed key generation for discrete-log based cryptosystems*. Journal of

Cryptology, 20(1):51–83, 2007. 17

[11] Michael Harkavy, J. D. Tygar, and Hiroaki Kikuchi. Electronic auctions

with private bids. In Proceedings of the 3rd conference on USENIX Work-

shop on Electronic Commerce - Volume 3, WOEC’98, pages 6–6. USENIX

Association, 1998. 1

[12] Yong-Sork Her, Kenji Imamoto, and Kouichi Sakurai. Some remarks on secu-

rity of receipt-free e-auction. In ICITA (2), pages 560–563. IEEE Computer

Society, July 2005. 2

[13] Jaydeep Howlader and Saikat Basu. Sender-side public key deniable en-

cryption scheme. In ARTCom, pages 9–13. IEEE Computer Society, 2009.

3

[14] Jaydeep Howlader, Anushma Ghosh, and Tandra DebRoy Pal. Secure

receipt-free sealed-bid electronic auction. In IC3, CCIS 40, pages 228–239.

Springer, 2009. 2, 19

[15] Jaydeep Howlader, Jayanta Kar, and Ashis Kumar Mal. Coercion resistant

mix for electronic auction. In Information Systems Security, LNCS 7671,

pages 238–248. Springer, 2012. 3, 21

[16] Jaydeep Howlader, Vivek Nair, Saikat Basu, and A. K. Mal. Uncoercibility

in e-voting and eauctioning mechanisms using deniable encryption. Interna-

tional Journal of Network Security & Its Applications (IJNSA), 3(2):97–109,

2011. 3

[17] Zheng Huang, Weidong Qiu, Haibin Guan, and Kefei Chen. Efficient receipt-

free electronic auction protocol. In SITIS, pages 1023–1028. IEEE Computer

Society, 2007. 2

38



REFERENCES

[18] Benaloh Josh and Tuinstra Dwight. Receipt-free secret-ballot elections (ex-

tended abstract). In ACM symposium on Theory of computing, STOC ’94,

pages 544–553, 1994. 1

[19] Torben P. Pedersen. Non-interactive and information-theoretic secure veri-

fiable secret sharing. In CRYPTO, CRYPTO ’91, pages 129–140. Springer-

Verlag, 1991. 12

[20] Torben Pryds Pedersen. A threshold cryptosystem without a trusted party

(extended abstract). In Advances in Cryptology-EUROCRYPT’91, LNCS

547, pages 522–526. Springer-Verlag, 1991. 16

[21] Ron Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining

digital signatures and public-key cryptosystems. Commun. ACM, 21(2):120–

126, 1978. 7

[22] Kouichi Sakurai and Shingo Miyazaki. A bulletin-board based digital auction

scheme with bidding down strategy-towards anonymous electronic bidding

without anonymous channels nor trusted centers. In cryTEC1999, pages

180–187, 1999. 1

[23] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

11, 15

[24] Kapali Viswanathan, Colin Boyd, and Ed Dawson. A three phased schema

for sealed bid auction system design. In ACISP, LNCS 1841, pages 412–426.

Springer, 2000. 1

[25] Chia-Chi Wu, Chin-Chen Chang, and Iuon-Chang Lin. New sealed-bid elec-

tronic auction with fairness, security and efficiency. J. Comput. Sci. Technol.,

23(2):253–264, 2008. 1

[26] Hu Xiong, Zhiguang Qin, Fengli Zhang, Yong Yang, and Yang Zhao. A

sealed-bid electronic auction protocol based on ring signature. In ICCCAS,

pages 480–483. IEEE, 2007. 1

39


	1 Introduction
	1.1 Survey

	2 Mathematical Concepts
	2.1 Number Theory
	2.1.1 Set
	2.1.2 Group
	2.1.3 Abelian Group

	2.2 Cyclic Group
	2.2.1 Generator:

	2.3 Ring
	2.4 Field
	2.5 Intractable Mathematical Problems
	2.5.1 Discrete Log Problem (DLP)
	2.5.2 Integer Factorization Problem (IFP)

	2.6 Cryptographic Algorithm (Asymmetric Cryptography)
	2.6.1 The RSA Public-key Encryption Algorithm
	2.6.2 The ElGamal Public-key Encryption Algorithm


	3 Secret Sharing
	3.1 How To Share a Secret
	3.1.1 Methodology
	3.1.2 Problems
	3.1.3 Note to Distributed Secret Sharing


	4 Distributed Key Generation
	4.1 Introduction
	4.2 Pedersen's Verifiable Secret Sharing
	4.3 Pedersen Threshold Cryptosystem
	4.4 Distributed Key Generation (DKG)
	4.4.1 Pedersen's Distributed Key Generation Protocol
	4.4.2 New Distributed Key Generation


	5 Application of Disributed Key Generation (DKG) in Sealed-Bid Auction
	5.1 Introduction
	5.2 Problem and Parameters
	5.3 Protocol
	5.3.1 System Setting

	5.4 Receipt-free sealed-bid auction mechanism
	5.4.1 Bidding Phase:
	5.4.1.1 Constructing the encrypted bid vector
	5.4.1.2 Sealing the bid-vector

	5.4.2 Bid Verification
	5.4.3 Opening Phase
	5.4.4 Trading:


	6 Analysis of Receipt-Free Sealed-Bid Auction
	6.1 Receipt-Freeness
	6.2 Non-Repudiation
	6.3 Correctness
	6.3.1 Publicly Verifiable Opening
	6.3.2 Adversary

	6.4 Efficiency
	6.5 Overhead of Message Passing for Misbehaviors in Distributed Key Generation

	7 Conclusion
	7.1 Further Work

	References

