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Wave Mechanics
 We study the properties of the wave function ! 

 In classical physics the wave function was apparently a wave in space 

which could be visualized, at least to a certain extent. 

 In QM, the wave function is not an objectively real entity, the wave 

function does not represent waves occurring in some material substance. 

 The wave mechanics offers a fairly direct route to some of the more 

important features of quantum mechanics !

The Probability Interpretation of the Wave Function

| Ψ(x,t)|2 δx = Probability of observing the particle in the small region (x, x + δ x) 

at time t ! 

 What this interpretation means in a practical sense ? 

 The conventional one uses the notion of  ‘Ensemble of identically prepared 

systems’ !

 Can be arrived at in a number of ways !

Probability amplitude



Probability amplitude
Ensamble

 The collection of identical copies of the same system all prepared in the 

same fashion is known as an ensemble. 

 We then assume that, at time t after the start of the preparation procedure, 

the state of each particle will be given by the same  wave function ψ(x, t).

Example: a simple system, consisting of just one particle !

 Now suppose we measure the position of the particle for such an ensamble !

 Invariably we will find that we get different results for the measurement 

of position, though each run of the experiment is supposedly identical to 

every other run. Moreover, the results vary in a random fashion.



Probability amplitude
 The manner in which the measured values of position are scattered is 

determined by the wave function ψ(x,t) !

 The scatter of values are quantified by the probability distribution 

P(x, t) = |ψ(x, t)|2

What do we get from P(x,t) ? 

 We can measure whether the particle position lies in an interval δx or not in 

each run of the experiment . 

 If we do the experiment N times, we can count up the number of particles for 

which the value of x lies in the range (x,  x + δx). Call this number δN(x). 

 It does not give the chances of a particle being observed at a precise position x !

δN/N => probability of observing the particle in the mentioned region. 

If N is made large, then 
𝛅𝐍

𝐍
≈ 𝐏 𝐱, 𝐭 𝛅𝐱 and  

𝛅𝐍

𝐍𝛅𝐱
≈ 𝐏(𝐱, 𝐭)



An example
An electron placed in the region x > 0 adjacent to the surface of liquid helium is attracted to 
the surface by its oppositely charged ‘image’ inside the surface. However, the electron 
cannot penetrate the surface (it is an infinitely high potential barrier). The wave function 
for the electron, in its lowest energy state, can be shown to be given by 

Ψ(x,t) = 2 a0
-1/2 ( x/a0 ) 𝒆

−
𝒙

𝒂𝟎 𝒆𝒊𝝎 𝒕 for      x >0 

=  0                                             for       x < 0

An experiment is conducted with the aim of measuring the distance of the electron 

from the surface. Suppose x can be measured with an accuracy ± 𝐚𝟎/𝟒 .



Normalization

 The probability interpretation given above tells us the probability of finding the 
particle in a small interval δx.

 We can calculate the probability of finding the particle in a finite range by dividing 

this range into segments of size x and simply adding together the contributions 

from each such segment.

 Hence, the probability of finding the particle in a finite range a < x < b, will be 

given by the integral  𝑎
𝑏
|ψ x, t |2 dx

 From this it immediately follows that the probability of finding the particle 

somewhere in the range −∝ < x < ∝ must be unity.

 After all, the particle is guaranteed to be found somewhere. Mathematically, this 

can be stated as  −∝
∝
|ψ x, t |2 dx = 1 .

The wave function is said to be ‘normalized to unity’.



Time dependent Schroedinger Equation

Linearity : 
If  ψ1(x, t) and  ψ2(x, t) are solutions, then b1 ψ1(x, t) + b2 ψ2(x, t) must also be a 
solution for any choice of the constants b1 and b2.

It is not possible to derive the Schroedinger equation !

Dispersion relation:

For a free particle , the wave function 𝐞𝐢 𝐤 𝐱 − 𝛚 𝐭 ought to be a solution of the 

Schroedinger equation if and only if   
ћ𝟐 𝐤𝟐

𝟐𝐦
= ћω (

P2

2m
= E) .

This reasoning leads directly to the time-dependent Schroedinger equation for

a free particle: 
− ћ𝟐

𝟐𝐦

𝛛𝟐𝛙

𝛛𝐱𝟐
= 𝐢 ћ

𝛛𝛙

𝛛𝐭

For particles moving through a potential V(x) -
ћ𝟐

𝟐𝐦

𝛛𝟐𝛙

𝛛𝐱𝟐
+ 𝐕𝛙 = 𝐢 ћ

𝛛𝛙

𝛛𝐭

 The experimental evidence discussed earlier suggests that it ought to 

have the properties like:



Time independent Schroedinger Equation

 The time-dependent Schrödinger equation tells you ψ (x, t) if you know  ψ(x, 0).

 It is an equation of motion and does not say anything (directly)

about quantisation or energy levels.

 The equation is satisfied by any wave function of the form 

ψ(x,t) =  𝒏𝑨𝒏 𝒆
𝒊(𝒌𝒏 𝒙 −𝝎𝒏 𝒕)

Contains various angular frequencies, it cannot have a precise energy.

 The energy may take any of the values  En = ћωn , for which |An |2≠ 0

A wave function with a precise energy, often known as an energy eigenfunction,

is any solution of the time-dependent Schroedinger equation involving only

a single angular frequency: ψ(x,t) = 𝐞𝐢 (𝐤 𝐱 −𝛚 𝐭) , the only possible energy is ћω

A single-frequency trial solution of the form 

ψ(x,t) = ø 𝒙 𝒆𝒊 𝝎𝒕
-
ћ𝟐

𝟐𝐦

𝛛𝟐ø

𝛛𝐱𝟐
+ 𝐕 ø = 𝐄 ø

The time independent Schrödinger equation 



Probability current

 A quantum particle such as an electron produces electric current because of 
its motion. Associated with the flow of its probability

 The form of the wave function that describes the state of a particle determines 

these currents.  

From time dependent Schroedinger equation
𝛛𝛒

𝛛𝐭
=
𝛛

𝛛𝐭
|𝛙|𝟐 =

𝛛𝛙

𝛛𝐭
𝛙∗ +
𝛛𝛙∗

𝛛𝐭
𝛙

 Using the definition of probability density ρ = |ψ|2

𝛛𝛒

𝛛𝐭
=
𝐢ћ

𝟐𝐦
𝛙∗
𝝏𝟐𝛙

𝛛𝒙𝟐
− 𝛙
𝝏𝟐𝛙∗

𝛛𝒙𝟐

=   -
𝐢ћ

𝟐𝐦

𝛛

𝛛𝐱
( 𝛙∗

𝛛𝛙

𝛛𝐱
− 𝛙

𝛛𝛙∗

𝛛𝐱
)

𝛛𝛒

𝛛𝐭
+
𝛛 𝐣

𝛛𝐱
= 𝟎Conservation equation

probability current

The rate of change of total probability P(t) of finding the particle inside a volume V is 

equal to the total flux of j through the boundary S.

𝐣 = −
𝐢ћ

𝟐𝐦
( 𝛙∗
𝛛𝛙

𝛛𝐱
− 𝛙
𝛛𝛙∗

𝛛𝐱
)

In 3D



Expectation value

 |ψ x, t |2 is a normalized probability density for the particle to be found in some region 
in space, it can be used to calculate various statistical properties of the position of the 
particle.

In order to understand it better, we will make use again the

‘ensemble of identically prepared systems’

 The number of particles with position in the range x to x + δx => δN(x)

 The fraction of particles that are observed to lie in this range will then be δN/N

 The mean or average value of all these results  𝒙 𝒕 =  𝑨𝒍𝒍 𝜹𝒙𝒙
𝜹𝑵

𝑵

 This mean will be an approximation to the mean value that would be found if the 

experiment were repeated an infinite number of times ! 

In the limit δx -> 0 ,     < x(t) > =  −∞
∞
𝐱 𝐏 𝐱, 𝐭 𝐝𝐱 =  −∞

∞
𝐱 |𝝍 𝒙, 𝒕 |𝟐 𝐝𝐱

Expectation value of x < f(x) > =  
−∞

∞

𝐟 𝐱 |𝝍 𝒙, 𝒕 |𝟐 𝐝𝐱

For any 

function f(x) 



Example
 We can use the data from the previous example of liquid helium (slide 5) and 

calculate the average value of the distance of the electron from the surface of 
the liquid helium !

< x >  ≈  𝒙 = 𝟎
𝟐𝟖

𝟑𝟎𝟎
+ 𝟎. 𝟓 𝒂𝟎

𝟔𝟗

𝟑𝟎𝟎
+ 𝒂𝟎

𝟕𝟔

𝟑𝟎𝟎
+ 𝟏. 𝟓 𝒂𝟎

𝟓𝟖

𝟑𝟎𝟎
+

𝟐 𝒂𝟎
𝟑𝟐

𝟑𝟎𝟎
+ 𝟐. 𝟓 𝒂𝟎

𝟏𝟕

𝟑𝟎𝟎
+ 𝟑 𝒂𝟎

𝟏𝟏

𝟑𝟎𝟎
+ 𝟑. 𝟓 𝒂𝟎

𝟔

𝟑𝟎𝟎
+

𝟒 𝒂𝟎
𝟐

𝟑𝟎𝟎
+ 𝟒. 𝟓 𝒂𝟎

𝟏

𝟑𝟎𝟎
= 1.24 𝒂𝟎

 The results can be compared with that follows for the 

expectation value calculated from the wave function for 

the particle:
Ψ(x,t) = 2 a0

-1/2 ( x/a0 ) 𝒆
−
𝒙

𝒂𝟎 𝒆𝒊𝝎 𝒕 for      x >0 
=  0                                             for       x < 0

< x > =  −∞
∞
𝐱 |𝛙 𝐱, 𝐭 |𝟐 𝐝𝐱 =  1.5 a0



Calculation of ∆x
 We can calculate the uncertainty in the position of the particle !

 The uncertainty is a measure of how widely the results of the measurement 

of the position of the electron are spread around the mean value.

 As is the case in the analysis of statistical data, this is done in terms of the 

usual statistical quantity, the standard deviation, written σx . 

(∆𝐱)𝟐 ≈  

𝐚𝐥𝐥 𝛅𝐱

𝐱 −  𝐱 𝟐
𝛅𝐍

𝐍
Now, Average value obtained from the data

 In the limit of an infinite number of measurements, the uncertainty is

𝝈𝒙
𝟐 =< (∆𝐱)𝟐 >=< (𝐱 − < 𝐱 > )𝟐 >=< 𝐱𝟐 > − < 𝐱 >𝟐

 In our example, from the data σx ≈ 𝟎. 𝟖𝟕 𝒂𝟎

 From the theory we have  < (∆𝐱)𝟐 >= < 𝐱𝟐 > - 2.25 𝒂𝟎
𝟐

1.24 𝒂𝟎

< 𝐱𝟐 >=  −∞
∞
𝛙∗ 𝐱𝟐 𝛙 𝐝𝐱 = 𝟑 𝒂𝟎

𝟐
𝝈𝒙 = 𝟎. 𝟖𝟕 𝐚𝟎



Momentum expectation value
Slide 9

Integrate by parts 

= 0, since ψ (±∞) = 𝟎

Variable p -> -iћ
𝝏

𝝏𝒙


