EE 101ME – Electric Circuits

Practice Problems

Q1. Find voltage across the terminal pair x-x' for the network shown below using

(a) Thevenin's equivalent circuit and (b) Norton's equivalent circuit

By Source transformation of 1A source,

Voltage across X X' =
$$V_{XX'}$$
 = 88 – 10 I
= 88 – 10 x 0.6857 = 81.143 V \Rightarrow V_{TH} = V_{THEVENIN} = V_{XX'} = **81.143**

Deactivating the independent sources,

$$R_{TH} = 10 \parallel 60 = 8.57 \Omega$$

Thevenin Equivalent Circuit:

Voltage across xx' =
$$V_{TH} \frac{50}{50+8.57}$$

$$= 81.143 \frac{50}{50 + 8.57} = 69.27 \text{ V.}$$

Using Source transformation of 1A source,

Now, Loop I
$$\Rightarrow$$
 88 - 10 I₁ = 0 or, I₁ = **8.8 A.**

Loop II
$$\Rightarrow$$
 $40 - I_2 \times 60 = 0$ or, $I_2 = 0.67 \text{ A}$

Now
$$I_{SC} = I_1 + I_2 = 9.47 A$$

: Norton equivalent circuit is

Voltage across xx' =
$$I_{SC} \frac{8.57}{(8.57+50)} \times 50 = 69.27 \text{ V}.$$

Q2. Find current through the Galvanometer (G, from terminal a to terminal b) which has an internal resistance of 40 Ω .

Thevenin equivalent across a-b are to be estimated.

$$V_a = \frac{1000}{1000 + 3000} \times 220 = 55 \, V$$

$$V_b = \frac{600}{600 + 400} \times 220 = 132 \, V$$

Applying KVL around loop ab gives

$$-V_a + V_{th} + V_b = 0$$

$$\Rightarrow V_{th} = V_a - V_b = 55 - 132$$

$$= -77V$$

Notice that $3 \text{ k}\Omega$ and $1 \text{ k}\Omega$ resistors are in parallel and so are the 400Ω and 600Ω resistors. The two parallel combinations form a series combination with respect to terminals \mathbf{a} and \mathbf{b} .

$$R_{th} = 3000 ||1000 + 400||600$$

= 990 Ω

The equivalent circuit is:

$$I_G = \frac{V_{Th}}{R_{Th} + R_m} = \frac{-77}{990 + 40} = -74.76 mA$$

Q3. Find maximum power delivered to the load resistor R₁ of the following circuit.

After disconnecting R_L , let the voltage across 0.5 k Ω be Vx and the open circuit voltage across **a-b** be the Thevenin's voltage Vth.

Current through 20 Ω is I_0 . Then, $9 + 20 I_0 = 500 I_0 = > I_0 = 9/480$ giving Vth = $9 + 20 I_0 + 400 I_0 = 16.875$ V.

Next, when a-b is short-circuited, let the current flowing from terminal a to terminal b be Isc. Let the node voltage between the resistors 20 Ω and 200 Ω be Vx.

Then, (Vx - 9)/20 + Vx/500 + Vx/200 = 0 => Vx = 7.895 V

$$Isc = 2I_0 + Vx/200 = 2Vx/500 + Vx/200 = 0.071 A$$

Now, Rth = Equivalent resistance across a-b

= Vth/Isc = 237.676 Ω

Maximum power delivered to the load $R_L = 0.25 \text{ Vth}^2 / \text{Rth} = 0.3 \text{ W (approx.)}$