EE101ME – Electric Circuits

Thevenin's Theorem

Thevenin's Theorem

Theorem: Any two-node linear network (circuit) may be replaced by a voltage source equal to the open circuit voltage between the nodes in series with the resistance as seen by a load at this port

Find voltage V_{ab} across a-b (24 Ω resistor or load) using Thevenin's theorem.

V_{Th} – Open circuit voltage across a-b

 $R_{th} = R_{eq}$ - Equivalent Resistance as seen by the load after deactivating all independent sources (setting to 0)

1. Open Circuit at nodes (terminals) a-b

$$V_{Th}$$

$$V_{Th} = V_1$$

Applying nodal analysis,

$$\frac{v_1 - 25}{5} + \frac{v_1}{20} = 3$$

$$v_{Th} = 32V$$

$$R_{eq} = R_{th}$$

- ➤ Deactivate all independent sources (SET to 0)
- √ Voltage sources short circuit
- √ Current sources Open circuit

$$R_{eq} = 4 + 20 ||5 = 4 + 4 = 8\Omega$$

$$R_{eq} = 8\Omega$$

$$\Rightarrow V_{Th}$$

$$= 32V$$

$$\Rightarrow V_{ab}$$

$$\downarrow$$

$$b$$

$$V_{ab} = 32 \times \frac{24}{24 + 8} = 24V$$

Find I (current through $4k\Omega$) applying Thevenin's Theorem

Solution

1. Open Circuit the $4k\Omega$ resistance

Applying nodal analysis,

$$\frac{V_{Th} - 4}{2000} = \frac{V_{Th}}{4000}$$
or, $2V_{Th} - 8 = V_{Th}$

$$V_{Th} = 8V$$

1. Deactivate the <u>independent</u> sources

You must NOT deactivate DEPENDENT source(s)

1. Apply a test voltage V_{Test}

Applying nodal analysis,

$$I_{\text{Test}} + \frac{V_{\text{Test}}}{4000} = \frac{\left(V_{\text{Test}} - I_{\text{Test}} \times 3000\right)}{2000}$$

$$4000I_{Test} + V_{Test} = 2V_{Test} - 6000I_{Test}$$

$$V_{\text{Test}} = 10000I_{\text{Test}}$$

$$\frac{V_{Test}}{I_{Test}} = 10000 = 10k\Omega$$

$$R_{eq} = 10k\Omega$$

Thevenin's Equivalent Circuit

Current through the 4 k Ω resistor becomes

$$I = \frac{8}{10+4} = 0.571 \text{mA}$$

END