EE 101H – Electric Circuits

Source Transformation

And

Superposition Theorem

Source Transformation

(a) A general practical voltage source connected to a load resistor R_L.

(b) A general practical current source connected to a load resistor R_L.

A source transformation allows a voltage source in series with a resistor to be replaced by a current source in parallel with the same resistor or vice versa

Suppose R_L is connected between a & b In order the two circuits be equivalent, resistor current i_L must be same in both cases

$$\frac{v_s}{R_s + R_L} = i_s \frac{R_s}{R_s + R_L} \Longrightarrow i_s = \frac{v_s}{R_s}$$

Ex

Find the power associated with the 6V source using source transformation.

$$\frac{30\times20}{30+20}=12\Omega$$

The power associated with the 6V source $= 6V \times 0.825A = 4.95W$ Power is +ve, absorbed

Superposition Theorem

A linear system obeys the principle of superposition

It states that whenever a linear system is excited by more than one independent source of energy, the total response is the sum of the individual responses

with all other independent sources made zero.

Example: Use superposition to find the current i_x

Solution

1. Find branch currents due to voltage source alone Replace the ideal current source by an open circuit

(a) A current source set to zero acts like an open circuit.

Current due to 3V source alone is 6Ω

Denoted by ix'

$$i_x' = 3V/(6+9)\Omega = 0.2A$$

2. Branch currents due to current source alone Replace the ideal voltage source by a short circuit

(b) A voltage source set to zero acts like a short circuit.

Current due to 2A current source alone is Denoted by i,''

$$i_x'' = 2 \times \frac{6}{6+9} = 0.8A$$

$$i_x = i_x' + i_x''$$

= 0.2 + 0.8
=1A

Use superposition to find the current i_x

While using superposition in linear circuits containing both independent and dependent sources, dependent sources are never deactivated

Example

Using KVL in (b),

10 - (2+1)
$$i_x$$
' - 2 i_x ' = 0
Or, 10 - 5 i_x ' = 0
 i_x ' = 2A

$$i_x$$
"+3 = (v"-2 i_x ") /1
Or, 3 i_x "+3 = v"
Again, v"/2= - i_x "
So, 3 i_x "+3 = -2 i_x "
Or, 5 i_x "= -3
Or, i_x "= -0.6A

$$i_x = i_x' + i_x'' = 2 + (-0.6) = 1.4A$$

Feedback

Go slow

Move faster

Any other?